精英家教网 > 高中数学 > 题目详情
(2013•浙江)已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“φ=
π
2
”的(  )
分析:φ=
π
2
⇒f(x)=Acos(ωx+
π
2
)⇒f(x)=Asin(ωx)(A>0,ω>0,x∈R)是奇函数.f(x)为奇函数⇒f(0)=0⇒φ=kπ+
π
2
,k∈Z.所以“f(x)是奇函数”是“φ=
π
2
”必要不充分条件.
解答:解:若φ=
π
2

则f(x)=Acos(ωx+
π
2

⇒f(x)=Asin(ωx)(A>0,ω>0,x∈R)是奇函数;
若f(x)是奇函数,
⇒f(0)=0,
∴f(0)=Acos(ω×0+φ)=Acosφ=0.
∴φ=kπ+
π
2
,k∈Z,不一定有φ=
π
2

“f(x)是奇函数”是“φ=
π
2
”必要不充分条件.
故选B.
点评:本题考查充分条件、必要条件和充要条件的判断,解题时要认真审题,仔细解答,注意三角函数性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•浙江)已知α∈R,sinα+2cosα=
10
2
,则tan2α=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江)已知i是虚数单位,则(2+i)(3+i)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江)已知a∈R,函数f(x)=x3-3x2+3ax-3a+3.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当x∈[0,2]时,求|f(x)|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江)已知抛物线C的顶点为O(0,0),焦点F(0,1)
(Ⅰ)求抛物线C的方程;
(Ⅱ) 过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线l:y=x-2于M、N两点,求|MN|的最小值.

查看答案和解析>>

同步练习册答案