| A. | [$\frac{1}{2}$,1) | B. | (1,2) | C. | (1,2] | D. | ($\frac{1}{2}$,1) |
分析 由题意可得t=2-ax2在(0,1)上为减函数,且t>0,a>1,即$\left\{\begin{array}{l}{a>1}\\{2-a×1≥0}\end{array}\right.$,由此求得a的范围
解答 解:由题意可得a>0,a≠1,设t=2-ax2,则t=2-ax2在(0,1)上为减函数,且t>0.
再根据f(x)=loga(2-ax2)在(0,1)上为减函数,可得a>1,
故有$\left\{\begin{array}{l}{a>1}\\{2-a×1≥0}\end{array}\right.$,求得1<a≤2,
故选:C.
点评 本题主要考查复合函数的单调性,对数函数、二次函数的性质,体现了转化的数学思想,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0<m<$\frac{1}{2}$ | B. | 0<m≤$\frac{1}{2}$ | C. | $\frac{1}{2}$<m≤1 | D. | $\frac{1}{2}$<m<1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com