精英家教网 > 高中数学 > 题目详情
x2
a2
-
y2
b2
=1
x2
b2
-
y2
a2
=1(a>b>0)的渐近线(  )
A.重合
B.不重合,但关于x轴对称
C.不重合,但关于y轴对称
D.不重合,但关于直线y=x对称
∵双曲线
x2
a2
-
y2
b2
=1
的渐近线方程为y=±
b
a
x,
而双曲线
x2
b2
-
y2
a2
=1的渐近线方程为y=±
a
b
x,
∴当a>b>0时,它们的渐近线不能重合
又∵直线y=±
b
a
x关于直线y=x对称的直线是x=±
b
a
y,即y=±
a
b
x,
∴两个双曲线的渐近线关于直线y=x对称
故选:D
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若∠F1PF2=60°,则椭圆的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)过,M(2,
2
),N(
6
,1)两点,求椭圆E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为F,右准线为l,A、B是椭圆上两点,且|AF|:|BF|=3:2,直线AB与l交于点C,则B分有向线段
AC
所成的比为(  )
A、
1
2
B、2
C、
2
3
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)其右准线交x轴于点A,双曲线虚轴的下端点为B,过双曲线的右焦点F(c,0)作垂直于x轴的直线交双曲线于点P,若点D满足:2
OD
=
OF
+
OP
(O为原点)且
AB
AD
(λ≠0)

(1)求双曲线的离心率;
(2)若a=2,过点B的直线l交双曲线于 M、N两点,问在y轴上是否存在定点C,使?
CM
CN
为常数,若存在,求出C点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
3
,焦点到对应准线的距离为8,则椭圆的标准方程为
 

查看答案和解析>>

同步练习册答案