精英家教网 > 高中数学 > 题目详情
已知函数f(x)=1-
a
x
,g(x)=
lnx
x
,且函数f(x)在点(1,f(1))处的切线与直线x+y+3=0垂直.
(I)求a的值;
(II)证明:g(x)≤f(x)在x∈(0,+∞)内恒成立.
分析:(I)函数f(x)的定义域为(-∞,0)∪(0,+∞),求导函数,利用导数的几何意义,结合函数f(x)在点(1,f(1))处的切线与直线x+y+3=0垂直,可求a的值;
(II)由(I)可得f(x)=1-
1
x
,证明g(x)≤f(x)在x∈(0,+∞)内恒成立,即
lnx
x
≤1-
1
x
(x>0)
恒成立,只要证明lnx-x+1≤0(x>0)恒成立,构造函数,研究函数的单调性即可证明.
解答:解:(I)函数f(x)的定义域为(-∞,0)∪(0,+∞),f′(x)=
a
x2

∴f′(1)=a
∵函数f(x)在点(1,f(1))处的切线与直线x+y+3=0垂直
∴f′(1)=1
∴a=1;
(II)由(I)可得f(x)=1-
1
x

证明g(x)≤f(x)在x∈(0,+∞)内恒成立,即
lnx
x
≤1-
1
x
(x>0)
恒成立
∴只要证明lnx-x+1≤0(x>0)恒成立
构造函数h(x)=lnx-x+1(x>0)
h′(x)=
1
x
-1

h′(x)=
1
x
-1>0
,结合x>0,可得0<x<1,令h′(x)=
1
x
-1<0
,结合x>0,可得x>1,
∴x=1处有极大值h(1)=0,且为最大值
∴lnx-x+1≤0在x∈(0,+∞)内恒成立
∴g(x)≤f(x)在x∈(0,+∞)内恒成立.
点评:本题重点考查导数知识的运用,考查导数的几何意义,考查构造法的运用,考查利用导数证明不等式,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案