精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2x2+bx+c
x2+1
(b<0)的值域是[1,3],
(1)求b、c的值;
(2)判断函数F(x)=lgf(x),当x∈[-1,1]时的单调性,并证明你的结论;
(3)若t∈R,求证:lg
7
5
≤F(|t-
1
6
|-|t+
1
6
|)≤lg
13
5
解;(1)设y=
2x2+bx+c
x2+1
,则(y-2)x2-bx+y-c=0.  ①
∵x∈R,∴①的判别式△≥0,即 b2-4(y-2)(y-c)≥0,即4y2-4(2+c)y+8c-b2≤0.  ②
由条件知,不等式②的解集是[1,3],
∴1,3是方程4y2-4(2+c)y+8c+b2=0的两根,故有
1+3=2+c
1×3=
8c+b2
4

∴c=2,b=-2,或b=2(舍),即f(x)=
2x2-2x+2
x2+1
=2-
2x
x2+1

(2)任取x1,x2∈[-1,1],且x2>x1,则有 x2-x1>0,且(x2-x1)(1-x1x2)>0,
∴f(x2)-f(x1)=-
2x2
1+x22
-(-
2x1
1+x12
)=
2(x2-x1)(x1x2 -1)
(1+x12)(1+x22)
<0,
∴f(x2)<f(x1),lgf(x2)<lgf(x1),即F(x2)<F(x1),∴F(x)为减函数.
(3)记 u=|t-
1
6
| - |t+
1
6
|
,则可得 |u| ≤ |(t-
1
6
)-(t+
1
6
)| =
1
3
,即-
1
3
≤u≤
1
3

根据F(x)的单调性知,F(
1
3
)≤F(u)≤F(-
1
3
)恒成立.
又f(
1
3
)=2-
2•
1
3
(
1
3
)
2
+1
=
7
5
,f(-
1
3
)=2-
2•(-
1
3
)
(-
1
3
)
2
+1
=
13
5

∴lg
7
5
≤F(|t-
1
6
|-|t+
1
6
|)≤lg
13
5
对任意实数t 成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案