精英家教网 > 高中数学 > 题目详情

在三棱锥A-BCD中,侧棱AC、AC、AD两两垂直,△ABC、△ACD、△ADB 的面积分别为数学公式数学公式数学公式,则该三棱锥外接球的表面积为


  1. A.
  2. B.
    4数学公式π
  3. C.
  4. D.
    24π
C
分析:三棱锥A-BCD中,侧棱AB、AC、AD两两垂直,补成长方体,两者的外接球是同一个,长方体的对角线就是球的直径,求出长方体的三度,转化为对角线长,即可求三棱锥外接球的表面积.
解答:三棱锥A-BCD中,侧棱AB、AC、AD两两垂直,补成长方体,两者的外接球是同一个,长方体的对角线就是球的直径,
∵侧棱AC、AC、AD两两垂直,△ABC、△ACD、△ADB 的面积分别为
AB•AC=AD•AC=AB•AD=
∴AB=,AC=1,AD=
∴球的直径为:
∴半径为
∴三棱锥外接球的表面积为=6π
故选C.
点评:本题考查三棱锥外接球的表面积,三棱锥转化为长方体,两者的外接球是同一个,以及长方体的对角线就是球的直径是解题的关键所在.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在三棱锥A-BCD中,DA,DB,DC两两垂直,且长度均为1,E为BC中点,则下列结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥A-BCD中,AB=4,CD=2,且异面直线AB、CD所成的角为60°,若M、N分别是AD、BC的中点,则MN=
3
7
3
7

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•渭南三模)在三棱锥A-BCD中,BD=BC=1,BD⊥BC,DE⊥AB,AD=2,AD⊥平面BCD.
(Ⅰ)求证:DE⊥平面ABC;
(Ⅱ)求平面BAC与平面DAC夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在三棱锥A-BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜
边,且AD=
3
,BD=CD=1,另一个侧面ABC是正三角形.
(1)当正视图方向与向量
CD
的方向相同时,画出三棱锥A-BCD的三视图;(要求标出尺寸)
(2)求二面角B-AC-D的余弦值;
(3)在线段AC上是否存在一点E,使ED与平面BCD成30°角?若存在,确定点E的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥A-BCD中,平行于BC的平面MNPQ分别交AB、AC、CD、BD于M、N、P、Q四点,且MN=PQ.
(1)求证:四边形MNPQ为平行四边形;
(2)试在直线AC上找一点F,使得MF⊥AD.

查看答案和解析>>

同步练习册答案