精英家教网 > 高中数学 > 题目详情

在等比数列{an}中,已知a2=8,a5=1.
(I)求数列{an}的通项公式;
(Ⅱ)若bn=a2n,求数列{bn}的前n和Sn

解:(Ⅰ)设等比数列{an}的公比为q,
由题意得:a2=a1q=8,…①
a5=a1q4=1.…②…(2分)
解①②得:a1=16,q=,. …(5分)
∴an=16=25-n.   …(7分)
(Ⅱ)∵数列{an}为等比数列,又∵bn=a2n
∴数列{bn}以b1=a2=8为首项,公比为的等比数列. …(10分)
∴Sn===. …(13分)
分析:(I)设出公比q,利用a2=8,a5=1,求出首项与公比,即可求数列{an}的通项公式;
(Ⅱ)通过bn=a2n,判断数列{bn}是等比数列,直接求出数列的前n和Sn
点评:本题是中档题,考查数列的通项公式与等比数列的判断,考查数列的前n项和的求法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等比数列{an}中,a4=
2
3
 , a3+a5=
20
9

(1)求数列{an}的通项公式;
(2)若数列{an}的公比大于1,且bn=log3
an
2
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,若a1=1,公比q=2,则a12+a22+…+an2=(  )
A、(2n-1)2
B、
1
3
(2n-1)
C、4n-1
D、
1
3
(4n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,如果a1+a3=4,a2+a4=8,那么该数列的前8项和为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,a1=1,8a2+a5=0,数列{
1
an
}
的前n项和为Sn,则S5=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,an>0且a2=1-a1,a4=9-a3,则a5+a6=
81
81

查看答案和解析>>

同步练习册答案