【题目】在直角坐标系
中,曲线
的参数方程为
(其中
为参数),曲线
,以坐标原点
为极点,以
轴正半轴为极轴建立极坐标系.
(1)求曲线
的普通方程和曲线
的极坐标方程;
(2)若射线
与曲线
,
分别交于
两点,求
.
科目:高中数学 来源: 题型:
【题目】等比数列{an}的各项均为正数,且2a1+3a2=1,
=9a2a6.
(1)求数列{an}的通项公式;
(2)设bn=log3a1+log3a2+…+log3an,求数列
的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一项抛掷骰子的过关游戏规定:在第
关要抛掷一颗骰子
次,如里这
次抛掷所出现的点数和大于
,则算过关,可以随意挑战某一关.若直接挑战第三关,则通关的概率为______;若直接挑战第四关,则通关的慨率为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆
经过点
,且点
到椭圆的两焦点的距离之和为
.
(1)求椭圆
的标准方程;
(2)若
是椭圆
上的两个点,线段
的中垂线
的斜率为
且直线
与
交于点
,
为坐标原点,求证:
三点共线.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
,其焦距为
,若
,则称椭圆
为“黄金椭圆”.黄金椭圆有如下性质:“黄金椭圆”的左、右焦点分别是
,
,以
,
,
,
为顶点的菱形
的内切圆过焦点
,
.
(1)类比“黄金椭圆”的定义,试写出“黄金双曲线”的定义;
(2)类比“黄金椭圆”的性质,试写出“黄金双曲线”的性质,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某公司为郑州园博园生产某特许商品,该公司年固定成本为10万元,每生产千件需另投入2 .7万元,设该公司年内共生产该特许商品工x千件并全部销售完;每千件的销售收入为R(x)万元,
且
,
(I)写出年利润W(万元〉关于该特许商品x(千件)的函数解析式;
〔II〕年产量为多少千件时,该公司在该特许商品的生产中所获年利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某次测试中,卷面满分为
分,考生得分为整数,规定
分及以上为及格.某调研课题小组为了调查午休对考生复习效果的影响,对午休和不午休的考生进行了测试成绩的统计,数据如下表:
分数段 |
|
|
|
|
|
|
|
午休考生人数 | 29 | 34 | 37 | 29 | 23 | 18 | 10 |
不午休考生人数 | 20 | 52 | 68 | 30 | 15 | 12 | 3 |
(1)根据上述表格完成下列列联表:
及格人数 | 不及格人数 | 合计 | |
午休 | |||
不午休 | |||
合计 |
(2)判断“能否在犯错误的概率不超过
的前提下认为成绩及格与午休有关”?
| 0.10 | 0.05 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
(参考公式:
,其中
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为
的函数
在
上有最大值1,设
.
(1)求
的值;
(2)若不等式
在
上恒成立,求实数
的取值范围;
(3)若函数
有三个不同的零点,求实数
的取值范围(
为自然对数的底数).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com