¡¾´ð°¸¡¿
·ÖÎö£º¸ù¾ÝÔ²µÄ±ê×¼·½³ÌµÄ¸ÅÄ¿ÉµÃ£¨1£©²»ÕýÈ·£»¸ù¾ÝÔ²µÄÇеãÏÒËùÔÚÖ±Ïß·½³ÌÐÎʽ£¬¿ÉµÃ£¨2£©ÕýÈ·£»¸ù¾Ý¹ýÔ²ÍâÒ»µã¿ÉÒÔ×÷Á½ÌõÔ²µÄÇÐÏߣ¬¿ÉµÃ£¨3£©²»ÕýÈ·£»¸ù¾ÝÔ²ÐĵĹ켣·½³Ì¡¢µãµ½Ö±ÏߵľàÀ빫ʽ£¬½áºÏÖ±ÏßÓëÔ²µÄλÖùØϵµÃµ½£¨4£©ÕýÈ·£¬¸ù¾ÝÖ±Ïßµ±n=4£¬m=0ʱ£¬Ö±Ïßkx-y+1-2k=0¾¹ýÔ²CÄÚ²¿Ò»µã£¬¿ÉµÃ£¨5£©²»ÕýÈ·£®
½â´ð£º½â£º¶ÔÓÚ£¨1£©£¬µ±m=1ʱ£¬ÇúÏßC£º£¨x-1£©
2+£¨y-2£©
2=
£¬
µ±n¡Ù0ʱ£¬±íʾԲÐÄΪ£¨1£¬2£©£¬°ë¾¶Îª
|n|µÄÔ²£®
µ«Ìõ¼þÖÐȱÉÙÁËn¡Ù0£¬¹Ê£¨1£©²»ÕýÈ·£»
¶ÔÓÚ£¨2£©£¬µ±m=0£¬n=2ʱ£¬ÇúÏßC£ºx
2+y
2=2£¬±íʾԲÐÄÔÚÔµã°ë¾¶Îª
µÄÔ²
ÉèA£¨x
1£¬y
1£©£¬B£¨x
2£¬y
2£©£¬¿ÉµÃ
¡ß¾¹ýµãAµÄÔ²µÄÇÐÏßΪx
1x+y
1y=2£¬¾¹ýµãBµÄÔ²µÄÇÐÏßΪx
2x+y
2y=2£¬
¡àÓɵ㣨3£¬3£©·Ö±ðÔÚÁ½ÌõÇÐÏßÉÏ£¬ÓÐ3x
1+3y
1=2ÇÒ3x
2+3y
2=2³ÉÁ¢
¿ÉµÃ¾¹ýA¡¢BµÄÖ±Ïß·½³ÌΪ3x+3y=2£¬¼´3x+3y-2=0£®¹Ê£¨2£©ÕýÈ·£»
¶ÔÓÚ£¨3£©£¬µ±m=1£¬n=
ʱ£¬ÇúÏßC£º£¨x-1£©
2+£¨y-2£©
2=1£¬
±íʾԲÐÄÔÚÔ£¨1£¬2£©£¬°ë¾¶Îª1µÄÔ²
¹ýµã£¨2£¬0£©ÏòÇúÏßC×÷ÇÐÏߣ¬ÇÐÏß·½³ÌΪy=-
£¨x-2£©ºÍx=2£¬
ÓÐÁ½ÌõÇÐÏߣ¬¹Ê£¨3£©²»ÕýÈ·£»
¶ÔÓÚ£¨4£©£¬µ±n=m¡Ù0ʱ£¬ÒòΪԲCµÄÔ²C£¨m£¬2m£©Âú×ãy=2x
ÇÒÖ±Ïßx-y=0ºÍy-7x=0¶¼Âú×ãCµ½Ö±ÏߵľàÀëÇ¡ºÃµÈÓÚÔ²µÄ°ë¾¶
|n|
¹ÊÇúÏßC±íʾԲÐÄÔÚÖ±Ïßy=2xÉϵÄԲϵ£¬ÇÒÕâЩԲµÄ¹«ÇÐÏß·½³ÌΪy=x»òy=7x£¬µÃ£¨4£©ÕýÈ·£»
¶ÔÓÚ£¨5£©£¬µ±n=4£¬m=0ʱ£¬ÇúÏßC£ºx
2+y
2=8£¬±íʾԲÐÄÔÚÔµã°ë¾¶Îª2
µÄÔ²
Ö±Ïßkx-y+1-2k=0¾¹ý¶¨µã£¨2£¬1£©£¬Ç¡ºÃΪԲÄÚÒ»µã
¹ÊÔ²C±Ø¶¨ÓëÖ±ÏßÏཻ£¬¹Ê£¨5£©²»ÕýÈ·
¹Ê´ð°¸Îª£º£¨2£©£¨4£©
µãÆÀ£º±¾Ìâ¸ø³öº¬ÓвÎÊýµÄÔ²·½³Ì£¬ÅжϹØÓÚÔ²·½³ÌµÄ¼¸¸ö½áÂÛµÄÕýÈ·ÐÔ£®×ÅÖØ¿¼²éÁËÔ²µÄ±ê×¼·½³Ì¡¢µãµ½Ö±ÏߵľàÀ빫ʽºÍÖ±ÏßÓëÔ²µÄλÖùØϵµÈ֪ʶµã£¬ÊôÓÚÖеµÌ⣮