(本小题满分12分) 已知函数在上是增函数,在上为减函数.
(Ⅰ)求的表达式;
(Ⅱ)若当时,不等式恒成立,求实数的值;
(Ⅲ)是否存在实数使得关于的方程在区间[0,2]上恰好有两个相异的实根,若存在,求实数的取值范围.
(I)f(x)=(1+x)2-ln(1+x)2(II)m>e2-2(Ⅲ)当2-2ln2<b≤3-2ln3时满足条件
(I)∵f′(x)=2(1+x)-=2·,
依题意f(x)在(-2,-1)上是增函数,在(-∞,-2)上为减函数.∴x=-2时,f(x)有极小值,∴f′(-2)=0.
代入方程解得a=1,
故f(x)=(1+x)2-ln(1+x)2 ----------2分
(II)由于f′(x)=2(1+x)-=,
令f′(x)=0,得x1=0,x2=-2.
(由于x∈,故x2=-2舍去),
易证函数在上单调递减,
在[0,e-1]上单调递增,
且f()=+2,f(e-1)=e2-2>+2,
故当x∈时,f(x)max=e2-2,
因此若使原不等式恒成立只需m>e2-2即可 ----------------6分
(III)若存在实数b使得条件成立,
方程f(x)=x2+x+b
即为x-b+1-ln(1+x)2=0,
令g(x)=x-b+1-ln(1+x)2,
则g′(x)=1-=,
令g′(x)>0,得x<-1或x>1,
令g′(x)<0,得-1<x<1,
故g(x)在[0,1]上单调递减,在[1,2]上单调递增,要使方程f(x)=x2+x+b在区间[0,2]上恰好有两个相异的实根,只需g(x)=0在区间[0,1]和[1,2]上各有一个实根,于是有2-2ln2<b≤3-2ln3, (高考*资源网-供稿)
故存在这样的实数b,当2-2ln2<b≤3-2ln3时满足条件 ------12分
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com