精英家教网 > 高中数学 > 题目详情
5.选择适当的方法证明
(1)$\sqrt{7}$+$\sqrt{13}$<3+$\sqrt{11}$;
(2)已知a,b,c>0,求证:a(b2+c2)+b(c2+a2)+c(a2+b2)≥6abc.

分析 (1)两边平方,使用分析法逐步找出使不等式成立的条件;
(2)使用基本不等式得出结论.

解答 证明:(1)欲证$\sqrt{7}$+$\sqrt{13}$<3+$\sqrt{11}$,
只需证($\sqrt{7}$+$\sqrt{13}$)2<(3+$\sqrt{11}$)2,即20+2$\sqrt{91}$<20+6$\sqrt{11}$.
只需证$\sqrt{91}$<3$\sqrt{11}$,即证$\sqrt{91}$$<\sqrt{99}$.
只需证91<99.
显然91<99恒成立,
∴$\sqrt{7}$+$\sqrt{13}$<3+$\sqrt{11}$.
(2)∵b2+c2≥2bc,a>0,∴a(b2+c2)≥2abc.
同理可得:b(c2+a2)≥2abc,c(a2+b2)≥2abc,
∴a(b2+c2)+b(c2+a2)+c(a2+b2)≥6abc.

点评 本题考查了不等式的证明方法,根据式子特点合理选择证明方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.点P(1,a)到直线x-2y+2=0的距离为$\frac{3\sqrt{5}}{5}$,且P在3x+y-3>0表示的区域内,则a=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在三棱锥P-ABC中,PA⊥底面ABC,AB=1,AC=2,∠BAC=60°,体积为$\frac{{\sqrt{3}}}{3}$,则三棱锥的外接球的体积等于$\frac{8\sqrt{2}}{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若x>0,则x+$\frac{9}{x}$+2有(  )
A.最小值6B.最小值8C.最大值4D.最大值3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.一个四面体,其中一个顶点A的三个角分别为60°,θ,90°,其中tanθ=2,则θ角与60°角所在面的二面角的余弦值为$-\frac{{\sqrt{3}}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)化简$\frac{sin(3π-α)•cos(α-π)•cos(4π+α)}{{sin(α-3π)•cos(\frac{π}{2}-α)•sin(\frac{π}{2}-α)}}$
(2)化简求值sin(-$\frac{π}{3}$)+2sin$\frac{4π}{3}$+3sin$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.圆心在抛物线x2=2y上且与直线2x+2y-3=0相切的圆中,面积最小的圆的方程为$(x+1)^{2}+(y-\frac{1}{2})^{2}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知复数z=$\frac{2}{1-i}$-2i,则z的共轭复数是(  )
A.1-iB.1+2iC.1-2iD.1+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.根据如图框图,当输入x为6时,输出的y=10.

查看答案和解析>>

同步练习册答案