精英家教网 > 高中数学 > 题目详情

已知函数,其图像在点处的切线为
(1)求、直线及两坐标轴围成的图形绕轴旋转一周所得几何体的体积;
(2)求、直线轴围成图形的面积.

(1)(2)

解析试题分析:解:(1)       (6分)
(2)直线的斜率,则直线方程为:           (8分)
            (12分)
考点:定积分的运用
点评:解决问题的关键是作图,同时能利用微积分基本定理来求解运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数上为增函数,求实数的取值范围;
(2)当时,求上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,若存在使得恒成立,则称  是
一个“下界函数” .
(I)如果函数(t为实数)为的一个“下界函数”,
求t的取值范围;
(II)设函数,试问函数是否存在零点,若存在,求出零点个数;
若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求曲线在点处的切线方程;
(2)设,如果过点可作曲线的三条切线,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数,),且这两函数的图像有公共点,并在该公共点处的切线相同.
(Ⅰ)求实数的值;
(Ⅱ)若时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知函数
(I)若曲线在点处的切线与直线垂直,求a的值;
(II)求函数的单调区间;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数.
(1)若的两个极值点为,且,求实数的值;
(2)是否存在实数,使得上的单调函数?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求曲线在点处的切线方程;
(2)设,如果过点可作曲线的三条切线,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知处有极值,其图象在处的切线与直线平行.
(1)求函数的单调区间;
(2)若时,恒成立,求实数的取值范围。

查看答案和解析>>

同步练习册答案