精英家教网 > 高中数学 > 题目详情
已知椭圆)右顶点到右焦点的距离为,短轴长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过左焦点的直线与椭圆分别交于两点,若线段的长为,求直线的方程.
(Ⅰ);(Ⅱ)

试题分析:(Ⅰ)由题意列关于a、b、c的方程组,解方程得a、b、c的值,既得椭圆的方程;(Ⅱ)分两种情况讨论:当直线轴垂直时,,此时不符合题意故舍掉;当直线轴不垂直时,设直线 的方程为:,代入椭圆方程消去得:,再由韦达定理得,从而可得直线的方程.
试题解析:(Ⅰ)由题意,,解得,即:椭圆方程为         4分                           
(Ⅱ)当直线轴垂直时,,此时不符合题意故舍掉;           6分
当直线轴不垂直时,设直线的方程为:
代入消去得: .
 ,则                           8分
所以   ,                                          11分
,                                  13分
所以直线.               14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,动点到两点的距离之和等于4,设点的轨迹为曲线C,直线过点且与曲线C交于A,B两点.
(Ⅰ)求曲线C的轨迹方程;
(Ⅱ)是否存在△AOB面积的最大值,若存在,求出△AOB的面积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的右焦点为,上顶点为B,离心率为,圆轴交于两点
(Ⅰ)求的值;
(Ⅱ)若,过点与圆相切的直线的另一交点为,求的面积

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两个焦点和上下两个顶点是一个边长为2且∠F1B1F2的菱形的四个顶点.
(1)求椭圆的方程;
(2)过右焦点F2 ,斜率为)的直线与椭圆相交于两点,A为椭圆的右顶点,直线分别交直线于点,线段的中点为,记直线的斜率为.求证:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的长轴两端点分别为是椭圆上的动点,以为一边在轴下方作矩形,使于点于点

(Ⅰ)如图(1),若,且为椭圆上顶点时,的面积为12,点到直线的距离为,求椭圆的方程;
(Ⅱ)如图(2),若,试证明:成等比数列.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,且经过点
(Ⅰ)求椭圆的方程;
(Ⅱ)如果过点的直线与椭圆交于两点(点与点不重合),
①求的值;
②当为等腰直角三角形时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的右焦点为F,其右准线与轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点F,则椭圆离心率的取值范围是(          )
A.(0,]B.(0,]C.[,1)D.[,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知分别为椭圆的两个焦点,点为其短轴的一个端点,若为等边三角形,则该椭圆的离心率为(    )
A.  B. C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的左、右焦点分别是,离心率为,过且垂直于轴的直线被椭圆截得的线段长为
(Ⅰ)求椭圆的方程;
(Ⅱ)点是椭圆上除长轴端点外的任一点,连接,设的角平分线的长轴于点,求的取值范围;
(Ⅲ)在(Ⅱ)的条件下,过点作斜率为的直线,使与椭圆有且只有一个公共点,设直线的斜率分别为。若,试证明为定值,并求出这个定值。

查看答案和解析>>

同步练习册答案