精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)是定义在实数集R上的奇函数,f′(x)是f(x)的导函数,且当x>0,f(x)+xf′(x)>0,设a=(log
1
2
4)f(log
1
2
4),b=
2
f(
2
),c=(lg
1
5
)f(lg
1
5
),则a,b,c的大小关系是(  )
A.c>a>bB.c>b>aC.a>b>cD.a>c>b
令F(x)=xf(x),
∵函数y=f(x)是定义在实数集R上的奇函数,∴F(x)为定义在实数集上的偶函数.
由F′(x)=f(x)+xf′(x),
∵当x>0,f(x)+xf′(x)>0,
∴F(x)在(0,+∞)上为增函数.
log
1
2
4=-2
lg
1
5
=-lg5

|lg
1
5
|<|
2
|<|log
1
2
4|

F(lg
1
5
)<F(
2
)<F(log
1
2
4)

即a>b>c.
故选:C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
设函数
(Ⅰ)求函数的单调区间;
(Ⅱ)已知对任意成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数f(x)=
1
2
sin2x+sinx
,则f′(x)是(  )
A.仅有最小值的奇函数
B.仅有最大值的偶函数
C.既有最大值又有最小值的偶函数
D.非奇非偶函数

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若f(x)=sin2-cosx,则f′(2)等于(  )
A.sin2+cos2B.cos2C.sin2D.sin2-cos2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=
1
3
x3-ax2-3a2x+1(a>0)

(I)求f′(x)的表达式;
(Ⅱ)求函数f(x)的单调区间、极大值和极小值;
(Ⅲ)若x∈[a+1,a+2]时,恒有f′(x)>-3a,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若对定义在R上的可导函数f(x),恒有(4-x)f(2x)+2xf′(2x)>0,(其中f′(2x)表示函数f(x)的导函数f′(x)在2x的值),则f(x)(  )
A.恒大于等于0B.恒小于0
C.恒大于0D.和0的大小关系不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若连续且不恒等于的零的函数f(x)满足f′(x)=3x2-x(x∈R),试写出一个符合题意的函数f(x)=______

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义域为R的函数,且对任意实数x,总有/(x)<3
则不等式<3x-15的解集为(  )
A.(﹣∞,4)
B.(﹣∞,﹣4)
C.(﹣∞,﹣4)∪(4,﹢∞)
D.(4,﹢∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=2x,则f′(x)=(  )
A.2xB.2x•ln2C.2x+ln2D.
2x
ln2

查看答案和解析>>

同步练习册答案