精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
设函数
(Ⅰ)求函数的单调区间;
(Ⅱ)已知对任意成立,求实数的取值范围。

(Ⅰ)






+
0
-
-

单调增
极大值
单调减
单调减
 
(Ⅱ)
 则 列表如下






+
0
-
-

单调增
极大值
单调减
单调减
     (2)  在  两边取对数, 得,由于所以
         (1)
由(1)的结果可知,当时, ,
为使(1)式对所有成立,当且仅当,即
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如右图(1)所示,定义在区间上的函数,如果满     
足:对常数A,都有成立,则称函数  
在区间上有下界,其中称为函数的下界. (提示:图(1)、(2)中的常数可以是正数,也可以是负数或零)
(Ⅰ)试判断函数上是否有下界?并说明理由;
(Ⅱ)又如具有右图(2)特征的函数称为在区间上有上界.
请你类比函数有下界的定义,给出函数在区间
有上界的定义,并判断(Ⅰ)中的函数在上是否
有上界?并说明理由;                   
(Ⅲ)若函数在区间上既有上界又有下界,则称函数
在区间上有界,函数叫做有界函数.试探究函数 (是常数)是否是是常数)上的有界函数?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

20090520

 
已知函数为自然对数的底数)

(Ⅰ)求的最小值
(Ⅱ)设不等式的解集为P,且,求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

理在直角坐标平面内,已知三点A、B、C共线,函数满足:(1)求函数的表达式;(2)若,求证:;(3)若不等式对任意及任意都成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知函数的图像与函数的图象相切,记
(Ⅰ)求实数b的值及函数F(x)的极值;
(Ⅱ)若关于x的方程F(x)=k恰有三个不等的实数根,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题16分) 设函数,且,其中是自然对数的底数.(1)求的关系;(2)若在其定义域内为单调函数,求的取值范围;
(3)设,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)  
已知.
(1)当时,求的单调区间;
(2)求在点处的切线与直线及曲线所围成的封闭图形的面积;
(3)是否存在实数,使的极大值为3?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f(x)=ln(2x-1),若f(x)在x0处的导数f′(x0)=1,则x0的值为(  )
A.
e+1
2
B.
3
2
C.1D.
3
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数y=f(x)是定义在实数集R上的奇函数,f′(x)是f(x)的导函数,且当x>0,f(x)+xf′(x)>0,设a=(log
1
2
4)f(log
1
2
4),b=
2
f(
2
),c=(lg
1
5
)f(lg
1
5
),则a,b,c的大小关系是(  )
A.c>a>bB.c>b>aC.a>b>cD.a>c>b

查看答案和解析>>

同步练习册答案