精英家教网 > 高中数学 > 题目详情
3.${∫}_{-1}^{1}$(x•cosx+5sin2x)dx=0.

分析 利用奇函数与微积分基本定理即可得出.

解答 解:∵函数f(x)=x•cosx+5sin2x为[-1,1]上的奇函数,∴${∫}_{-1}^{0}$(x•cosx+5sin2x)dx=-${∫}_{0}^{1}$(x•cosx+5sin2x)dx,
∴${∫}_{-1}^{1}$(x•cosx+5sin2x)dx=${∫}_{-1}^{0}$(x•cosx+5sin2x)dx+${∫}_{0}^{1}$(x•cosx+5sin2x)dx=0,
故答案为:0.

点评 本题考查了奇函数的性质、微积分基本定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow{a}$=(1,cosα),$\overrightarrow{b}$=(-2,sinα),且$\overrightarrow{a}$∥$\overrightarrow{b}$.
(1)求tan(π+α)的值;
(2)求3sin2α-sin(2π-α)cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知p:$\frac{1}{a-2}≥\frac{1}{2}$成立,q:函数f(x)=-(a-1)x(a>1且a≠2)是减函数,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.从装有质地、大小均相同的3个红球和2个白球的口袋内任取两个球,给出下列各对事件:①至少有1个白球;都是红球;②至少有1个白球;至少有1个红球;③恰好有1个白球;恰好有2个白球.其中,互斥事件的对数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知p:4+2=5,q:3≥2,则下列判断中,错误的是(  )
A.p或q为真,非q为假B.p或q为真,非p为真
C.p且q为假,非p为假D.p且q为假,p或q为真

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=sin\frac{x}{3}cos\frac{x}{3}+\sqrt{3}{cos^2}\frac{x}{3}$.
(1)求f(x)的最小正周期和单调递增区间;
(2)如果△ABC的三边a,b,c满足b2=ac,且边b所对角为x,试求x的范围及此时函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知线段AM的端点A的坐标是(3,0),端点M在圆C:x2+y2=4上.
(1)当直线AM与圆C相切时,求直线AM的方程;
(2)若动点P满足$\overrightarrow{AP}$=2$\overrightarrow{MP}$,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.用一张正方形铁片剪一个直角边长分别为4cm和1cm的直角三角形铁片.所需正方形铁片的边长的最小值为$\frac{16}{5}$cm.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一个正项等比数列前n项的和为3,前3n项的和为21,则前2n项的和为(  )
A.18B.12C.9D.6

查看答案和解析>>

同步练习册答案