精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2x-
1
2x

(1)若f(x)=2+
2
2x
,求x的值;
(2)判断f(x)的单调性,并证明;
(3)若2tf(2t)+mf(t)≥0对于任意实数t∈[1,2]恒成立,求实数m的取值范围.
分析:(1)由题意可得 2x-
1
2x
=2+
2
2x
,即 22x -2•2x-3=0,解得 2x 的值,可得x的值.
(2)函数f(x)的定义域为R,任意取x2>x1,化简f(x2)-f(x1)的解析式,可得它的符号为正号,
即 f(x2)>f(x1),可得函数f(x)在R上是增函数.
(3)当t∈[1,2],由题意可得m≥-(4t+1).求得-(4t+1)的最大值为-5,从而求得m的范围.
解答:解:(1)∵f(x)=2x-
1
2x
=2+
2
2x
,∴22x -2•2x-3=0,解得 2x=3,或 2x=-1 (舍去),
故 x=log23.
(2)函数f(x)的定义域为R,任意取x2>x1,则 f(x2)-f(x1)=2x2-
1
2x2
-(2x1-
1
2x1
)=(2x2-2x1)(1+
1
2x2•2x1
).
由题设可得,(2x2-2x1)>0,(1+
1
2x2•2x1
)>0,∴f(x2)-f(x1)>0,即 f(x2)>f(x1),
故函数f(x)在R上是增函数.
(3)当t∈[1,2],2tf(2t)+mf(t)≥0恒成立,即2t(22t-
1
22t
)+m(2t-
1
2t
)≥0.
由于2t-
1
2t
>0,∴2t(2t+
1
2t
)+m≥0,故 m≥-(4t+1).
由于-(4t+1)的最大值为-5,故有m≥-5,即m的范围是[-5,+∞).
点评:本题主要考查函数的单调性的判断和证明,函数的恒成立问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案