精英家教网 > 高中数学 > 题目详情

函数f(x)=数学公式零点的取值范围是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
C
分析:直接求出x=0,,1的函数值,即可判断零点所在的区间.
解答:因为f(0)=1,f()=>0
f()=>0
f()=<0,
f(1)=-
所以,函数f(x)=零点的取值范围是:
故选C.
点评:本题考查函数的零点存在定理的应用,注意函数值与0的比较,指数函数以及幂函数的基本性质的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+x+1,a∈R.
(1)若函数f(x)在x=-1处取得极值,求a的值;
(2)在满足(1)的条件下,探究函数f(x)零点的个数;如果有零点,请指出每个零点处于哪两个连续整数之间,并说明理由;
(3)讨论函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)满足:当x>0时,f(x)=2012x+log2012x,则在R上,函数f(x)零点的个数为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•东城区一模)已知函数f(x)=(
1
2
)x-x
1
3
,那么在下列区间中含有函数f(x)零点的为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c.
(1)若f(-1)=0,试判断函数f(x)零点的个数;
(2)是否存在a,b,c∈R,使f(x)同时满足以下条件:
①对任意x∈R,f(-1+x)=f(-1-x),且f(x)≥0;
②对任意x∈R,都有0≤f(x)-x≤
1
2
(x-1)2.若存在,求出a,b,c的值;若不存在,请说明理由.
(3)若对任意x1、x2∈R且x1<x2,f(x1)≠f(x2),试证明:存在x0∈(x1,x2),使f(x0)=
1
2
[f(x1)+f(x2)]成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)
(1)若f(-1)=0,试判断函数f(x)零点的个数;
(2)是否存在a,b,c∈R,使f(x)同时满足以下条件:①f(-1+x)=f(-1-x)且f(x)≥0;
②对0≤f(x)-x≤
12
(x-1)2.若存在,求出a,b,c的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案