精英家教网 > 高中数学 > 题目详情

各项均为正数的数列{an}的前n项和为Sn,满足2(Sn+1)=an2+an(n∈Nn)(I)求数列{an}的通项公式;(II)记bn=2nan,求数列{bn}的前项和Tn

解:(I)令n=1,则2(S1+1)=a12+a1
∴a1=-1(舍)或a1=2
当n≥2时,2(Sn+1)=an2+an
2(Sn-1+1)=an-12+an-1
两式相减得
2an=an2-an-12+an-an-1
∵an>0
∴an-an-1=1
∴数列{an}为等差数列,首项为2,公差为1
∴an=n+1
(II)∵bn=2n•an=(n+1)•2n
∴Tn=2•2+3•22+4•23+…+n•2n-1+(n+1)•2n
2Tn=2•22+3•23+…+n•2n+(n+1)•2n+1
两式相减得
-Tn=2+2+22+23+…+2n-(n+1)•2n+1
=2+
∴Tn=n•2n+1
分析:(I)通过仿写作差将和与项的递推关系转化为项间的递推关系,利用等差数列的定义判断出数列{an}为等差数列,利用等差数列的通项公式求出通项.
(II)求出数列{bn}的通项,据通项特点,选择利用错位相减法求数列的前n项和.
点评:求数列的前n项和,首先求出数列的通项,根据通项的特点选择合适的求和方法,当通项是一个等差数列与等比数列的乘积构成的新数列,利用错位相减法求和.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设单调递增函数f(x)的定义域为(0,+∞),且对任意的正实数x,y有f(xy)=f(x)+f(y),且f(
1
2
)=-1

(1)一个各项均为正数的数列{an}满足:f(sn)=f(an)+f(an+1)-1其中Sn为数列{an}的前n项和,求数列{an}的通项公式;
(2)在(1)的条件下,是否存在正数M使下列不等式:2n•a1a2…an≥M
2n+1
(2a1-1)(2a2-1)…(2an-1)
对一切n∈N*成立?若存在,求出M的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

各项均为正数的数列{an}中,a1=1,Sn是数列{an}的前n项和,对任意n∈N,有2Sn=2p
a
2
n
+pan-p(p∈R).
(1)求常数p的值;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的数列{an}的前n项和为Sn,且Sn,an
1
2
成等差数列,
(1)求a1,a2的值;
(2)求数列{an}的通项公式;
(3)若bn=4-2n(n∈N*),设cn=
bn
an
,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

各项均为正数的数列{an}的前n项和为Sn,且点(an,Sn)在函数y=
1
2
x2+
1
2
x-3
的图象上,
(1)求数列{an}的通项公式;
(2)记bn=nan(n∈N*),求证:
1
b1
+
1
b2
+…+
1
bn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•长宁区二模)已知各项均为正数的数列{an}的前n项和sn满足s1>1,且6sn=(an+1)(an+2)(n为正整数).
(1)求{an}的通项公式;
(2)设数列{bn}满足bn=
an,n为偶数
2an,n为奇数
,求Tn=b1+b2+…+bn
(3)设Cn=
bn+1
bn
,(n为正整数)
,问是否存在正整数N,使得n>N时恒有Cn>2008成立?若存在,请求出所有N的范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案