精英家教网 > 高中数学 > 题目详情

函数f(x)=数学公式是R上的减函数,则a的取值范围是________.


分析:由题意可得,当x<0时,f(x)=(a-)x+3a,要使函数f(x)是R上的减函数,应有a-<0,且3a≥a0.由此求得a的取值范围.
解答:∵函数f(x)=是R上的减函数,
当x<0时,f(x)=(a-)x+3a,x>0时,f(x)=ax
要使函数f(x)是R上的减函数,应有a-<0,且3a≥a0
解得 ≤a<,故a的取值范围是
故答案为
点评:本题主要考查函数的单调性的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知下列命题:
①若f(x)为减函数,则-f(x)为增函数;
②若f(0)<f(4),则函数f(x)不是R上的减函数;
③若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];
④设函数f(x)是在区间[a,b]上图象连续的函数,且f(a)•f(b)<0,则方程f(x)=0在区间[a,b]上至少有一实根.
⑤若函数f(x)=
(2-m)x+2m(x<1)
(m-1)|x+1|(x≥1)
在R上是增函数,则m的取值范围是1<m<2;
其中正确命题的序号有
①②④
①②④
(把所有正确命题的番号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在R上的函数f(x),有如下四个命题:
①若f(0)=0,则函数f(x)是奇函数;
②若f(-4)≠f(4),则函数f(x)不是偶函数;
③若f(0)<f(4),则函数f(x)是R上的增函数;
④若f(0)<f(4),则函数f(x)不是R上的减函数.
其中正确的命题有
.(写出你认为正确的所有命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x+1)是R上的奇函数,?x1,x2∈R,(x1-x2)[f(x1)-f(x2)]<0,则f(1-x)>0的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区二模)已知函数y=f(x),x∈D,如果对于定义域D内的任意实数x,对于给定的非零常数m,总存在非零常数T,恒有f(x+T)>m•f(x)成立,则称函数f(x)是D上的m级类增周期函数,周期为T.若恒有f(x+T)=m•f(x)成立,则称函数f(x)是D上的m级类周期函数,周期为T.
(1)已知函数f(x)=-x2+ax是[3,+∞)上的周期为1的2级类增周期函数,求实数a的取值范围;
(2)已知 T=1,y=f(x)是[0,+∞)上m级类周期函数,且y=f(x)是[0,+∞)上的单调递增函数,当x∈[0,1)时,f(x)=2x,求实数m的取值范围;
(3)下面两个问题可以任选一个问题作答,如果你选做了两个,我们将按照问题(Ⅰ)给你记分.
(Ⅰ)已知当x∈[0,4]时,函数f(x)=x2-4x,若f(x)是[0,+∞)上周期为4的m级类周期函数,且y=f(x)的值域为一个闭区间,求实数m的取值范围;
(Ⅱ)是否存在实数k,使函数f(x)=coskx是R上的周期为T的T级类周期函数,若存在,求出实数k和T的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x-1)是R上的奇函数,?x1,x2∈R,(x1-x2)[f(x1)-f(x2)]<0,则f(1-x)<0的解集是(  )
A、(-∞,0)B、(0,+∞)C、(-∞,2)D、(2,+∞)

查看答案和解析>>

同步练习册答案