如图1,在直角梯形
中,
,
,且
.
现以
为一边向形外作正方形
,然后沿边
将正方形
翻折,使平面
与平面
垂直,
为
的中点,如图2.
(1)求证:
∥平面
;
(2)求证:
平面
;
(3)求点
到平面
的距离.
![]()
图
图![]()
(1)利用线线平行证明线面平行;(2)利用线线垂直证明线面垂直;(3)利用等体积法求解点到面平面的距离
【解析】
试题分析:
![]()
解:(1)证明:取
中点
,连结
.
在△
中,
分别为
的中点, 所以
∥
,且
.
由已知
∥
,
, 所以
∥
,且
.
3分
所以四边形
为平行四边形. 所以
∥
.
4分
又因为
平面
,且
平面
,所以
∥平面
.
5分
(2)证明:在正方形
中,
.
又因为平面![]()
平面
,且平面
平面
,
所以
平面
. 所以
.
7分
在直角梯形
中,
,
,可得
.
在△
中,
,
所以
.所以
. 8分
所以
平面
.
10分
(3)解法一:由(2)知,
平面![]()
又因为
平面
, 所以平面
平面
.
11分
过点
作
的垂线交
于点
,则
平面![]()
所以点
到平面
的距离等于线段
的长度
12分
在直角三角形
中,![]()
所以![]()
所以点
到平面
的距离等于
. 14分
解法二:由(2)知,![]()
所以![]()
12分
又
,设点
到平面
的距离为![]()
则![]()
, 所以![]()
所以点
到平面
的距离等于
. 14分
考点:本题考查了空间中的线面关系
点评:立体几何问题主要是探求和证明空间几何体中的平行和垂直关系以及空间角、体积等计算问题.对于平行和垂直问题的证明或探求,其关键是把线线、线面、面面之间的关系进行灵活的转化.在寻找解题思路时,不妨采用分析法,从要求证的结论逐步逆推到已知条件.
科目:高中数学 来源:2013-2014学年山西省高三上学期期中考试理科数学试卷(解析版) 题型:解答题
如图1,在直角梯形
中,
,
,
,
. 把
沿对角线
折起到
的位置,如图2所示,使得点
在平面
上的正投影
恰好落在线段
上,连接
,点
分别为线段
的中点.
![]()
(1)求证:平面
平面
;
(2)求直线
与平面
所成角的正弦值;
(3)在棱
上是否存在一点
,使得
到点
四点的距离相等?请说明理由.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年北京市海淀区高三5月期末练习(二模)理科数学试卷(解析版) 题型:解答题
如图1,在直角梯形
中,
,
,
,
. 把
沿对角线
折起到
的位置,如图2所示,使得点
在平面
上的正投影
恰好落在线段
上,连接
,点
分别为线段
的中点.
(I)求证:平面
平面
;
(II)求直线
与平面
所成角的正弦值;
(III)在棱
上是否存在一点
,使得
到点
四点的距离相等?请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源:2012-2013学年山东省高三4月模拟理科数学试卷(解析版) 题型:解答题
如图1,
在直角梯形
中,
,
,
,
为线段
的中点. 将
沿
折起,使平面![]()
平面
,得到几何体
,如图2所示.
(1)求证:
平面
;
(2)求二面角
的余弦值. ![]()
查看答案和解析>>
科目:高中数学 来源:2010年天津市天津一中高三下学期第五次月考数学(理) 题型:解答题
如图1,在直角梯形
中,
,
把△
沿对角线
折起后如图2所示(点
记为点
), 点
在平面
上的正投影
落在线段
上, 连接
.
(1) 求直线
与平面
所成的角的大小;
(2) 求二面角
的大小的余弦值.![]()
![]()
图1 图2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com