已知(1+x)n=a0+a1(x-1)+a2(x-1)2+…+an(x-1)n(n∈N*).
(1)求a0及Sn=a1+a2+a3+…+an;
(2)试比较Sn与(n-2)2n+2n2的大小,并说明理由.
(1)a0=2n Sn=3n-2n.(2)当n=1时,Sn>(n-2)2n+2n2;当n=2,3时,Sn<(n-2)2n+2n2;当n≥4,n∈N*时,Sn>(n-2)2n+2n2.
【解析】(1)取x=1,则a0=2n;
取x=2,则a0+a1+a2+a3+…+an=3n,
所以Sn=a1+a2+a3+…+an=3n-2n.
(2)要比较Sn与(n-2)2n+2n2的大小,
即比较:3n与(n-1)2n+2n2的大小.
当n=1时,3n>(n-1)2n+2n2;
当n=2,3时,3n<(n-1)2n+2n2;
当n=4,5时,3n>(n-1)2n+2n2.
猜想:当n≥4时,3n>(n-1)2n+2n2,
下面用数学归纳法证明:
由上述过程可知,n=4时结论成立.
假设当n=k(k≥4)时结论成立,即3k>(k-1)2k+2k2,
两边同乘以3,得3k+1>3[(k-1)2k+2k2]=k2k+1+2(k+1)2+[(k-3)2k+4k2-4k-2].
而(k-3)2k+4k2-4k-2=(k-3)2k+4(k2-k-2)+6=(k-3)2k+4(k-2)(k+1)+6>0.
所以3k+1>[(k+1)-1]2k+1+2(k+1)2.
即n=k+1时结论也成立.
所以当n≥4时,3n>(n-1)2n+2n2成立.
综上得,
当n=1时,Sn>(n-2)2n+2n2;当n=2,3时,Sn<(n-2)2n+2n2;
当n≥4,n∈N*时,Sn>(n-2)2n+2n2.
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用3练习卷(解析版) 题型:填空题
给定区域D:令点集T={(x0,y0)∈D|x0,y0∈Z,(x0,y0)是z=x+y在D上取得最大值或最小值的点},则T中的点共确定________条不同的直线.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用20练习卷(解析版) 题型:解答题
如图,四边形ABCD是矩形,平面ABCD⊥平面BCE,BE⊥EC.
(1)求证:平面AEC⊥平面ABE;
(2)点F在BE上.若DE∥平面ACF,求的值.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用17练习卷(解析版) 题型:解答题
学校游园活动有这样一个游戏项目:甲箱子里装有3个白球,2个黑球,乙箱子里装有1个白球,2个黑球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖(每次游戏结束后将球放回原箱)
(1)求在一次游戏中
①摸出3个白球的概率;②获奖的概率.
(2)求在两次游戏中获奖次数X的分布列及数学期望E(X).
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用16练习卷(解析版) 题型:解答题
如图,在四棱锥P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中点.
(1)求证:平面EAC⊥平面PBC;
(2)若二面角P-AC-E的余弦值为,求直线PA与平面EAC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用13练习卷(解析版) 题型:解答题
在直角坐标系xOy中,中心在原点O,焦点在x轴上的椭圆C上的点(2,1)到两焦点的距离之和为4.
(1)求椭圆C的方程;
(2)过椭圆C的右焦点F作直线l与椭圆C分别交于A,B两点,其中点A在x轴下方,且=3.求过O,A,B三点的圆的方程.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用10练习卷(解析版) 题型:填空题
数列{an}的通项公式an=,若{an}的前n项和为24,则n为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com