精英家教网 > 高中数学 > 题目详情

如图,在四棱锥PABCD中,PC底面ABCD,底面ABCD是直角梯形,ABADABCDAB2AD2CD2EPB的中点.

(1)求证:平面EAC平面PBC

(2)若二面角PACE的余弦值为,求直线PA与平面EAC所成角的正弦值.

 

1)见解析(2

【解析】(1)PC平面ABCDAC?平面ABCDACPC.AB2ADCD1ACBC.

AC2BC2AB2.ACBC.

BCPCCAC平面PBC.

AC?平面EAC

平面EAC平面PBC.

(2)如图,以点C为原点,分别为x轴、y轴、z轴正方向,建立空间直角坐标系,

C(0,0,0)A(1,1,0)B(1,-1,0),设P(0,0a)(a>0)

E(1,1,0)(0,0a).m(1,-1,0),则m·m·0m为面PAC的法向量.设n(xyz)为面EAC的法向量,则n·n·0,即xay=-az=-2,则n(a,-a,-2),依题意,|cosmn|,则a2.于是n(2,-2,-2)(1,1,-2).设直线PA与平面EAC所成角为θ,则sin θ|cosn|,即直线PA与平面EAC所成角的正弦值为

 

练习册系列答案
相关习题

科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用2练习卷(解析版) 题型:填空题

已知[x]表示不超过实数x的最大整数,如[1.8]1[1.2]=-2.x0是函数f(x)ln x的零点,则[x0]________.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用1练习卷(解析版) 题型:填空题

已知函数yf(x)R上的偶函数,对?xR都有f(x4)f(x)f(2)成立.当x1x2[0,2],且x1x2时,都有<0,给出下列命题:

f(2)0

直线x=-4是函数yf(x)图象的一条对称轴;

函数yf(x)[4,4]上有四个零点;

f(2 014)0.

其中所有正确命题的序号为________

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用18练习卷(解析版) 题型:解答题

已知(1x)na0a1(x1)a2(x1)2an(x1)n(nN*)

(1)a0Sna1a2a3an

(2)试比较Sn(n2)2n2n2的大小,并说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用17练习卷(解析版) 题型:解答题

一投掷飞碟的游戏中,飞碟投入红袋记2分,投入蓝袋记1分,未投入袋记0分.经过多次试验,某人投掷100个飞碟有50个入红袋,25个入蓝袋,其余不能入袋.

(1)求该人在4次投掷中恰有三次投入红袋的概率;

(2)求该人两次投掷后得分ξ的数学期望.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用15练习卷(解析版) 题型:解答题

已知曲线C1 (t为参数)C2

(θ为参数)

(1)C1C2的方程为普通方程,并说明它们分别表示什么曲线;

(2)C1上的点P对应的参数为tQC2上的动点,求PQ中点M到直线C3 (t为参数)距离的最小值.

解 

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用14练习卷(解析版) 题型:解答题

abc为正实数,求证:abc≥2.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用12练习卷(解析版) 题型:填空题

设椭圆C1(ab0)恒过定点A(1,2),则椭圆的中心到准线的距离的最小值________

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学(文)二轮专题复习与测试选择填空限时训练4练习卷(解析版) 题型:选择题

执行如图所示的程序框图,若输出的b的值为16,则图中判断框内处应填( )

A2 B3

C4 D5

 

查看答案和解析>>

同步练习册答案