精英家教网 > 高中数学 > 题目详情
13.若存在正实数t,使得函数f(x)在给定区间M上,对于任意x∈M,有x+t∈M,且f(x+t)≥f(x),则f(x)称为M上的t级类增函数,则下列命题正确的是(  )
A.函数f(x)=$\frac{4}{x}$+x是(1,+∞)上的1级类增函数
B.函数f(x)=|log2(x-1)|是(1,+∞)上的1级类增函数
C.若函数f(x)=x2-3x为[0,+∞)上的t级类增函数,则实数t的取值范围为[1,+∞)
D.若函数f(x)=sinx+ax为[$\frac{π}{2}$,+∞)上的$\frac{π}{3}$级类增函数,则整数a的最小值为1

分析 对于A,f(x+1)-f(x)=$\frac{{x}^{2}+x-4}{x(x+1)}≥$0在(1,+∞)上不恒成立,故A错误;对于B,f(x+1)-f(x)=|log2x|-|log2(x-1)|≥0在(1,+∞)上不恒成立,故B错误;对于C,由条件可知
,对任意x∈[0,+∞),有x+t∈[0,+∞),且f(x+t)≥f(x),即t≥3-2x在[0,+∞)上恒成立,再将恒成立问题转为求函数的最值可得t≥3,故C错误;对于D,由条件可知,对任意x∈[$\frac{π}{2}$,+∞),由f(x+$\frac{π}{3}$)≥f(x),即$\frac{π}{3}a≥sin(x-\frac{π}{3})$,而sin(x-$\frac{π}{3}$)≤1,从而a$≥\frac{3}{π}$,则最小整数值为1,故D正确.

解答 解:对于选项A:当x∈(1,2)时,f(x+1)-f(x)=$\frac{4}{x+1}+(x+1)-\frac{4}{x}-x$=$\frac{{x}^{2}+x-4}{x(x+1)}$<0,即f(x+1)≥f(x)在(1,+∞)上不恒成立,故A错误;
对于选项B:f(x+1)-f(x)=|log2x|-|log2(x-1)|,当x=$\frac{3}{2}$时,f(x+1)-f(x)=$lo{g}_{2}\frac{3}{2}-|lo{g}_{2}\frac{1}{2}|=lo{g}_{2}\frac{3}{2}-1$<0,即f(x+1)≥f(x)在(1,+∞)上不恒成立,故B错误;
对于选项C:∵函数f(x)=x2-3x为[0,+∞)上的t级类增函数,
∴对任意x∈[0,+∞),有x+t∈[0,+∞),且f(x+t)≥f(x),即(x+t)2-3(x+t)≥x2-3x,
∴对任意x∈[0,+∞),2tx+t2-3t≥0,即t≥3-2x
∵3-2x≤3,∴t≥3,即t的取值范围为[3,+∞).故C错误;
对于选项D:∵函数f(x)=sinx+ax为[$\frac{π}{2}$,+∞)上的$\frac{π}{3}$级类增函数,
∴对任意x∈[$\frac{π}{2}$,+∞),由f(x+$\frac{π}{3}$)≥f(x),即sin(x+$\frac{π}{3}$)+a(x+$\frac{π}{3}$)≥sinx+ax,
∴$\frac{1}{2}$sinx+$\frac{\sqrt{3}}{2}$cosx+ax+$\frac{π}{3}$a≥sinx+ax,即$\frac{π}{3}a$$≥\frac{1}{2}$sinx-$\frac{\sqrt{3}}{2}$cosx
∵$\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx=sin(x-\frac{π}{3})$≤1
∴$\frac{π}{3}a≥1$,即a$≥\frac{3}{π}$
∴整数a的最小值为1,故D正确.
故选:D

点评 本题考查命题的真假判断,考查新定义,同时考查函数的性质及应用,是中档题.解题时要认真审题,仔细解答,注意合理地进行等价转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=2cos(ωx+φ)的部分图象如图所示,其中ω>0,|φ|<$\frac{π}{2}$,则f($\frac{1}{4}$)的值为(  )
A.-$\sqrt{3}$B.-1C.$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与不过坐标原点O的直线l:y=kx+m相交与A、B两点,线段AB的中点为M,若AB、OM的斜率之积为-$\frac{3}{4}$,则椭圆C的离心率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在四棱锥P-ABCD中,底面是边长为2的菱形,∠BAD=60°,PA=PD=2,PD⊥CD.E为AB中点.
(1)证明:PE⊥CD;
(2)求二面角C-PE-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知全集U=R,A={x|3x-4x+3≥0},B={x|log3x>0},则A∩(∁UB)=(  )
A.(-∞,-3]B.(-∞,-3)C.[43,+∞)D.(-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f1(x)=$\frac{1}{1+x}$-$\frac{1}{(1+x)^{2}}$(t-x),其中t为正常数.
(1)求函数f1(x)在(0,+∞)上的最大值;
(2)设数列{an}满足:a1=$\frac{5}{3}$,3an+1=an+2,完成下面两个问题:
①求证:对?x>0,$\frac{1}{{a}_{n}}$≥f${\;}_{\frac{2}{{3}^{n}}}$(x)(n∈N*);
②对?n∈N*,你能否比较$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$与$\frac{{n}^{2}}{n+1}$的大小?若能,请给予证明;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某校高二奥赛班N名学生的物理测评成绩(满分120分)分布直方图如图,已知分数在100-110的学生数有21人.
(1)求总人数N和分数在110-115分的人数n;
(2)现准备从分数在110-115的n名学生(女生占$\frac{1}{3}$)中任选2人,求其中恰好含有一名女生的概率;
(3)为了分析某个学生的学习状态,对其下一阶段的学生提供指导性建议,对他前7次考试的数学成绩x(满分150分),物理成绩y进行分析,下面是该生7次考试的成绩.
数学888311792108100112
物理949110896104101106
已知该生的物理成绩y与数学成绩x是线性相关的,求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$.若该生的数学成绩达到130分,请你估计他的物理成绩大约是多少?
(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.对于任意集合X与Y,定义:①X-Y={x|x∈X且x∉Y},②X△Y=(X-Y)∪(Y-X),已知A={y|y=x2,x∈R},B={y|-2≤y≤2},则A△B=[-3,0)∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.对于实数x,符号[x]表示不超过x的最大整数,例如[π]=3,[-1.08]=-2,定义函数f(x)=x-[x],下列命题中正确命题的序号②③⑤.
①函数f(x)的最大值为1;
②函数f(x)的最小值为0;
③方程f(x)-$\frac{1}{2}$=0有无数个解;
④函数f(x)是增函数;
⑤对任意的x∈R,函数f(x)满足f(x+1)=f(x);
⑥函数f(x)的图象与函数g(x)=|lgx|的图象的交点个数为10个.

查看答案和解析>>

同步练习册答案