精英家教网 > 高中数学 > 题目详情
4.在平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与不过坐标原点O的直线l:y=kx+m相交与A、B两点,线段AB的中点为M,若AB、OM的斜率之积为-$\frac{3}{4}$,则椭圆C的离心率为$\frac{1}{2}$.

分析 设A(x1,y1),B(x2,y2).线段AB的中点M(x0,y0).可得$\frac{{x}_{1}^{2}}{{a}^{2}}$+$\frac{{y}_{1}^{2}}{{b}^{2}}$=1,$\frac{{x}_{2}^{2}}{{a}^{2}}$+$\frac{{y}_{2}^{2}}{{b}^{2}}$=1,相减可得:$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{{a}^{2}}$+$\frac{({y}_{1}+{y}_{2})({y}_{1}-{y}_{2})}{{b}^{2}}$=0,利用中点坐标公式、斜率计算公式及其$\frac{{y}_{0}}{{x}_{0}}$•k=$-\frac{3}{4}$,即可得出$\frac{{b}^{2}}{{a}^{2}}$,再利用离心率计算公式即可得出.

解答 解:设A(x1,y1),B(x2,y2).线段AB的中点M(x0,y0).
∵$\frac{{x}_{1}^{2}}{{a}^{2}}$+$\frac{{y}_{1}^{2}}{{b}^{2}}$=1,$\frac{{x}_{2}^{2}}{{a}^{2}}$+$\frac{{y}_{2}^{2}}{{b}^{2}}$=1,
相减可得:$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{{a}^{2}}$+$\frac{({y}_{1}+{y}_{2})({y}_{1}-{y}_{2})}{{b}^{2}}$=0,
把x1+x2=2x0,y1+y2=2y0,$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=k代入可得:$\frac{2{x}_{0}}{{a}^{2}}$+$\frac{2{y}_{0}k}{{b}^{2}}$=0,
又$\frac{{y}_{0}}{{x}_{0}}$•k=$-\frac{3}{4}$,∴$\frac{1}{{a}^{2}}$-$\frac{3}{4{b}^{2}}$=0,解得$\frac{{b}^{2}}{{a}^{2}}$=$\frac{3}{4}$.
∴e=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查了椭圆的标准方程及其性质、中点坐标公式、斜率计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知A={x|x<a},B={x|1<x<4},若A⊆∁RB,则实数a的取值范围为(  )
A.(-∞,1)B.(-∞,4]C.(-∞,1]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系中,已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=4co{s}^{2}\frac{θ}{2}-1}\\{y=2sinθ}\end{array}\right.$(θ为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,两坐标系取相同的单位长度,曲线C2的极坐标方程为ρ=-2sin(θ+$\frac{π}{6}$).
(1)把曲线C1的参数方程化为极坐标方程;
(2)求曲线C1与C2的交点M(ρ1,θ1)的极坐标,其中ρ1≤0,0≤θ1<2π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设l为直线,α,β为不同的平面,下列命题正确的是(  )
A.若l∥α,l∥β,则α∥βB.若l∥α,α∥β,则l∥βC.若l⊥α,l∥β,则α⊥βD.若l⊥α,l⊥β,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知点P(x,y)满足$\left\{\begin{array}{l}x+y≤6\\ y≥x\\ x≥2\end{array}\right.$过点P的直线与圆x2+y2=36相交于A、B两点,则|AB|的最小值为(  )
A.8B.$4\sqrt{5}$C.$6\sqrt{2}$D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆的右焦点F(m,0),左、右准线分别为l1:x=-m-1,l2:x=m+1,且l1,l2分别与直线y=x相交于A,B两点.
(1)若离心率为$\frac{\sqrt{2}}{2}$,求椭圆的方程;
(2)当$\overrightarrow{AF}$•$\overrightarrow{FB}$<7时,求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知对任意x∈R,不等式2${\;}^{-{x}^{2}-x}$>($\frac{1}{2}$)${\;}^{2{x}^{2}-mx+m+4}$恒成立.求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若存在正实数t,使得函数f(x)在给定区间M上,对于任意x∈M,有x+t∈M,且f(x+t)≥f(x),则f(x)称为M上的t级类增函数,则下列命题正确的是(  )
A.函数f(x)=$\frac{4}{x}$+x是(1,+∞)上的1级类增函数
B.函数f(x)=|log2(x-1)|是(1,+∞)上的1级类增函数
C.若函数f(x)=x2-3x为[0,+∞)上的t级类增函数,则实数t的取值范围为[1,+∞)
D.若函数f(x)=sinx+ax为[$\frac{π}{2}$,+∞)上的$\frac{π}{3}$级类增函数,则整数a的最小值为1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.计算81+891+8991+89991+…+8$\underbrace{99…99}_{n-1个9}$1=10n+1-9n-10.

查看答案和解析>>

同步练习册答案