分析 设A(x1,y1),B(x2,y2).线段AB的中点M(x0,y0).可得$\frac{{x}_{1}^{2}}{{a}^{2}}$+$\frac{{y}_{1}^{2}}{{b}^{2}}$=1,$\frac{{x}_{2}^{2}}{{a}^{2}}$+$\frac{{y}_{2}^{2}}{{b}^{2}}$=1,相减可得:$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{{a}^{2}}$+$\frac{({y}_{1}+{y}_{2})({y}_{1}-{y}_{2})}{{b}^{2}}$=0,利用中点坐标公式、斜率计算公式及其$\frac{{y}_{0}}{{x}_{0}}$•k=$-\frac{3}{4}$,即可得出$\frac{{b}^{2}}{{a}^{2}}$,再利用离心率计算公式即可得出.
解答 解:设A(x1,y1),B(x2,y2).线段AB的中点M(x0,y0).
∵$\frac{{x}_{1}^{2}}{{a}^{2}}$+$\frac{{y}_{1}^{2}}{{b}^{2}}$=1,$\frac{{x}_{2}^{2}}{{a}^{2}}$+$\frac{{y}_{2}^{2}}{{b}^{2}}$=1,
相减可得:$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{{a}^{2}}$+$\frac{({y}_{1}+{y}_{2})({y}_{1}-{y}_{2})}{{b}^{2}}$=0,
把x1+x2=2x0,y1+y2=2y0,$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=k代入可得:$\frac{2{x}_{0}}{{a}^{2}}$+$\frac{2{y}_{0}k}{{b}^{2}}$=0,
又$\frac{{y}_{0}}{{x}_{0}}$•k=$-\frac{3}{4}$,∴$\frac{1}{{a}^{2}}$-$\frac{3}{4{b}^{2}}$=0,解得$\frac{{b}^{2}}{{a}^{2}}$=$\frac{3}{4}$.
∴e=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.
点评 本题考查了椭圆的标准方程及其性质、中点坐标公式、斜率计算公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1) | B. | (-∞,4] | C. | (-∞,1] | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若l∥α,l∥β,则α∥β | B. | 若l∥α,α∥β,则l∥β | C. | 若l⊥α,l∥β,则α⊥β | D. | 若l⊥α,l⊥β,则α⊥β |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | $4\sqrt{5}$ | C. | $6\sqrt{2}$ | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数f(x)=$\frac{4}{x}$+x是(1,+∞)上的1级类增函数 | |
| B. | 函数f(x)=|log2(x-1)|是(1,+∞)上的1级类增函数 | |
| C. | 若函数f(x)=x2-3x为[0,+∞)上的t级类增函数,则实数t的取值范围为[1,+∞) | |
| D. | 若函数f(x)=sinx+ax为[$\frac{π}{2}$,+∞)上的$\frac{π}{3}$级类增函数,则整数a的最小值为1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com