15£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=4co{s}^{2}\frac{¦È}{2}-1}\\{y=2sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬Á½×ø±êϵȡÏàͬµÄµ¥Î»³¤¶È£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=-2sin£¨¦È+$\frac{¦Ð}{6}$£©£®
£¨1£©°ÑÇúÏßC1µÄ²ÎÊý·½³Ì»¯Îª¼«×ø±ê·½³Ì£»
£¨2£©ÇóÇúÏßC1ÓëC2µÄ½»µãM£¨¦Ñ1£¬¦È1£©µÄ¼«×ø±ê£¬ÆäÖЦÑ1¡Ü0£¬0¡Ü¦È1£¼2¦Ð£®

·ÖÎö £¨1£©ÓÉÇúÏßC1µÄ²ÎÊý·½³Ì£¬¿ÉµÃx=2£¨cos¦È+1£©-1=2cos¦È+1£¬ÀûÓÃͬ½ÇÈý½Çº¯Êýƽ·½¹ØÏµ¿ÉµÃÆÕͨ·½³ÌΪ£º£¨x-1£©2+y2=4£¬Õ¹¿ª°Ñx=¦Ñcos¦È£¬y=¦Ñsin¦È´úÈëÉÏÊö·½³Ì¿ÉµÃ¼«×ø±ê·½³Ì£®
£¨2£©ÓÉÇúÏßC2µÄ¼«×ø±ê·½³Ì£º¦Ñ=-2sin£¨¦È+$\frac{¦Ð}{6}$£©£¬Õ¹¿ª¿ÉµÃ£º$¦Ñ+cos¦È+\sqrt{3}$sin¦È=0£¬¼´¦Ñ2+¦Ñcos¦È+$\sqrt{3}¦Ñ$sin¦È=0£¬ÀûÓæÑ2=x2+y2£¬x=¦Ñcos¦È£¬y=¦Ñsin¦È¼´¿É»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬ÁªÁ¢½âµÃ½»µã£¬»¯Îª¼«×ø±ê¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=4co{s}^{2}\frac{¦È}{2}-1}\\{y=2sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬¿ÉµÃx=2£¨cos¦È+1£©-1=2cos¦È+1£¬
¡à£¨x-1£©2+y2=4£¨cos2¦È+sin2¦È£©=4£¬¿ÉµÃÆÕͨ·½³ÌΪ£º£¨x-1£©2+y2=4£¬Õ¹¿ªÎª£ºx2+y2-2x-3=0£¬
°Ñx=¦Ñcos¦È£¬y=¦Ñsin¦È´úÈëÉÏÊö·½³Ì¿ÉµÃ¼«×ø±ê·½³Ì£º¦Ñ2-2¦Ñcos¦È-3=0£®
£¨2£©ÓÉÇúÏßC2µÄ¼«×ø±ê·½³Ì£º¦Ñ=-2sin£¨¦È+$\frac{¦Ð}{6}$£©£¬Õ¹¿ª¿ÉµÃ£º$¦Ñ+cos¦È+\sqrt{3}$sin¦È=0£¬¼´¦Ñ2+¦Ñcos¦È+$\sqrt{3}¦Ñ$sin¦È=0£¬
»¯ÎªÖ±½Ç×ø±ê·½³ÌΪ£ºx2+y2+x+$\sqrt{3}$y=0£¬ÁªÁ¢$\left\{\begin{array}{l}{£¨x-1£©^{2}+{y}^{2}=4}\\{{x}^{2}+{y}^{2}+x+\sqrt{3}y=0}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=0}\\{y=-\sqrt{3}}\end{array}\right.$£¬»ò$\left\{\begin{array}{l}{x=-1}\\{y=0}\end{array}\right.$£®
¡àÇúÏßC1ÓëC2µÄ½»µãµÄÖ±½Ç×ø±êΪ$£¨0£¬-\sqrt{3}£©$£¬»ò£¨-1£¬0£©£®
»¯Îª¼«×ø±êΪ£º$£¨-\sqrt{3}£¬\frac{¦Ð}{2}£©$£¬»ò£¨-1£¬0£©£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±êÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯¡¢ÇúÏߵĽ»µãÓë·½³Ì×éµÄ¹ØÏµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Èý¸öÊý${log_2}\frac{1}{5}\;£¬\;{2^{0.1}}\;£¬\;{2^{-1}}$µÄ´óС¹ØÏµÊÇ£¨¡¡¡¡£©
A£®${log_2}\frac{1}{5}\;£¼{2^{0.1}}\;£¼{2^{-1}}$B£®${2^{0.1}}\;£¼{2^{-1}}£¼{log_2}\frac{1}{5}$
C£®${log_2}\frac{1}{5}\;£¼{2^{-1}}£¼{2^{0.1}}$D£®${2^{0.1}}\;£¼{log_2}\frac{1}{5}£¼{2^{-1}}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÏÂÁÐÅжÏÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®0∉NB£®1¡Ê{x|£¨x-1£©£¨x+2£©=0}C£®N*¡ÊZD£®0={0}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=2cos£¨¦Øx+¦Õ£©µÄ²¿·ÖͼÏóÈçͼËùʾ£¬ÆäÖЦأ¾0£¬|¦Õ|£¼$\frac{¦Ð}{2}$£¬Ôòf£¨$\frac{1}{4}$£©µÄֵΪ£¨¡¡¡¡£©
A£®-$\sqrt{3}$B£®-1C£®$\frac{1}{2}$D£®-$\frac{\sqrt{3}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªÊ×ÏîΪ-6µÄµÈ²îÊýÁÐ{an}µÄǰ7ÏîºÍΪ0£¬µÈ±ÈÊýÁÐ{bn}Âú×ãb3=a7£¬|b3-b4|=6£®
£¨1£©ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨2£©ÊÇ·ñ´æÔÚÕýÕûÊýk£¬Ê¹µÃÊýÁÐ{$\frac{1}{{b}_{n}}$}µÄǰkÏîºÍ´óÓÚ$\sqrt{2}$£¿²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªF1¡¢F2ÊÇÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÁ½¸ö½¹µã£¬PΪÍÖÔ²CÉϵÄÒ»µã£¬ÇÒ$\overline{P{F}_{1}}$¡Í$\overline{P{F}_{2}}$£®Èô¡÷PF1F2µÄÃæ»ýΪ9£¬Ôòb=£¨¡¡¡¡£©
A£®3B£®6C£®3$\sqrt{3}$D£®2$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÇóÂú×ãÏÂÁи÷Ìõ¼þµÄÍÖÔ²µÄ±ê×¼·½³Ì£º
£¨1£©³¤ÖáÊǶÌÖáµÄ3±¶ÇÒ¾­¹ýµãA£¨3£¬0£©£»
£¨2£©¶ÌÖáÒ»¸ö¶ËµãÓëÁ½½¹µã×é³ÉÒ»¸öÕýÈý½ÇÐΣ¬ÇÒ½¹µãµ½Í¬²à¶¥µãµÄ¾àÀëΪ$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©Óë²»¹ý×ø±êÔ­µãOµÄÖ±Ïßl£ºy=kx+mÏཻÓëA¡¢BÁ½µã£¬Ïß¶ÎABµÄÖеãΪM£¬ÈôAB¡¢OMµÄбÂÊÖ®»ýΪ-$\frac{3}{4}$£¬ÔòÍÖÔ²CµÄÀëÐÄÂÊΪ$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Ä³Ð£¸ß¶þ°ÂÈü°àNÃûѧÉúµÄÎïÀí²âÆÀ³É¼¨£¨Âú·Ö120·Ö£©·Ö²¼Ö±·½Í¼Èçͼ£¬ÒÑÖª·ÖÊýÔÚ100-110µÄѧÉúÊýÓÐ21ÈË£®
£¨1£©Çó×ÜÈËÊýNºÍ·ÖÊýÔÚ110-115·ÖµÄÈËÊýn£»
£¨2£©ÏÖ×¼±¸´Ó·ÖÊýÔÚ110-115µÄnÃûѧÉú£¨Å®ÉúÕ¼$\frac{1}{3}$£©ÖÐÈÎÑ¡2ÈË£¬ÇóÆäÖÐÇ¡ºÃº¬ÓÐÒ»ÃûÅ®ÉúµÄ¸ÅÂÊ£»
£¨3£©ÎªÁË·ÖÎöij¸öѧÉúµÄѧϰ״̬£¬¶ÔÆäÏÂÒ»½×¶ÎµÄѧÉúÌṩָµ¼ÐÔ½¨Ò飬¶ÔËûǰ7´Î¿¼ÊÔµÄÊýѧ³É¼¨x£¨Âú·Ö150·Ö£©£¬ÎïÀí³É¼¨y½øÐзÖÎö£¬ÏÂÃæÊǸÃÉú7´Î¿¼ÊԵijɼ¨£®
Êýѧ888311792108100112
ÎïÀí949110896104101106
ÒÑÖª¸ÃÉúµÄÎïÀí³É¼¨yÓëÊýѧ³É¼¨xÊÇÏßÐÔÏà¹ØµÄ£¬Çó³öy¹ØÓÚxµÄÏßÐԻع鷽³Ì$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$x+$\stackrel{¡Ä}{a}$£®Èô¸ÃÉúµÄÊýѧ³É¼¨´ïµ½130·Ö£¬ÇëÄã¹À¼ÆËûµÄÎïÀí³É¼¨´óÔ¼ÊǶàÉÙ£¿
£¨²Î¿¼¹«Ê½£º$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$£¬$\stackrel{¡Ä}{a}$=$\overline{y}$-$\stackrel{¡Ä}{b}$$\overline{x}$£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸