精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为e=
3
2
,直线x+y+1=0与椭圆交于P、Q两点,且OP⊥OQ,求该椭圆方程.
设P(x1,y1),Q(x2,y2),
e=
3
2
,∴
c
a
=
3
2
,∴a2=
4
3
c2=b2+c2
,∴a2=4b2
设椭圆方程
x2
4b2
+
y2
b2
=1

联立
x+y+1=0
x2
4b2
+
y2
b2
=1
消y得5x2+8x+4-4b2=0,
∵直线x+y+1=0与椭圆交于P、Q两点,∴△=64-4×5×(4-4b2)>0,化为5b3>1.
x1+x2=-
8
5
x1x2=
4-4b2
5
(*)
∵OP⊥OQ,∴
OP
OQ
=0

∴x1x2+y1y2=0,∴x1x2+(x1+1)(x2+1)=0.
∴2x1x2+x1+x2+1=0,
把(*)代入可得2
4-4b2
5
+(-
8
5
)+1=0,
解得b2=
5
8
,∴b=
10
4
.满足△>0.∴b2=
5
8

a2=
5
2

∴椭圆方程为
x2
5
2
+
y2
5
8
=1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,椭圆C:x2+3y2=3b2(b>0).
(1)求椭圆C的离心率;
(2)若b=1,A,B是椭圆C上两点,且|AB|=
3
,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在椭圆
x2
16
+
y2
9
=1
内,有一内接三角形ABC,它的一边BC与长轴重合,点A在椭圆上运动,则△ABC的重心的轨迹方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过双曲线x2-y2=1上一点Q作直线x+y=2的垂线,垂足为N,则线段QN的中点P的轨迹方程为(  )
A.2x2-2y2-2x-1=0B.x2+y2=1
C.2x2+2y2-y=0D.2x2-2y2-2x+2y-1=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线x-y+1=0经过椭圆S:
x2
a2
+
y2
b2
=1(a>b>0)
的一个焦点和一个顶点.
(1)求椭圆S的方程;
(2)如图,M,N分别是椭圆S的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k.
①若直线PA平分线段MN,求k的值;
②对任意k>0,求证:PA⊥PB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)其右准线交x轴于点A,双曲线虚轴的下端点为B,过双曲线的右焦点F(c,0)作垂直于x轴的直线交双曲线于点P,若点D满足:2
OD
=
OF
+
OP
(O为原点)且
AB
AD
(λ≠0)

(1)求双曲线的离心率;
(2)若a=2,过点B的直线l交双曲线于M、N两点,问在y轴上是否存在定点C,使?
CM
CN
为常数,若存在,求出C点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知抛物线C:x2=2py(p>0)与圆O:x2+y2=8相交于A、B两点,且
OA
OB
=0
(O为坐标原点),直线l与圆O相切,切点在劣弧AB(含A、B两点)上,且与抛物线C相交于M、N两点,d是M、N两点到抛物线C的焦点的距离之和.
(Ⅰ)求p的值;
(Ⅱ)求d的最大值,并求d取得最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线x2=4
3
y
的准线过双曲线
x2
m2
-y2=-1
的一个焦点,则双曲线的离心率为(  )
A.
3
2
4
B.
6
2
C.
3
D.
3
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

[理]如图,已知动点A,B分别在图中抛物线y2=4x及椭圆
x2
4
+
y2
3
=1
的实线上运动,若ABx轴,点N的坐标为(1,0),则△ABN的周长l的取值范围是______.
[文]点P是曲线y=x2-lnx上任意一点,则P到直线y=x-2的距离的最小值是______.

查看答案和解析>>

同步练习册答案