精英家教网 > 高中数学 > 题目详情
如图,已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)其右准线交x轴于点A,双曲线虚轴的下端点为B,过双曲线的右焦点F(c,0)作垂直于x轴的直线交双曲线于点P,若点D满足:2
OD
=
OF
+
OP
(O为原点)且
AB
AD
(λ≠0)

(1)求双曲线的离心率;
(2)若a=2,过点B的直线l交双曲线于M、N两点,问在y轴上是否存在定点C,使?
CM
CN
为常数,若存在,求出C点的坐标,若不存在,请说明理由.
(1)由题得B(0,-b),A(
a2
c
,0)易得P(c,
b2
a
)
,P(c,
b2
a

∵2O
D
=O
F
+O
P

∴D为线段FP的中点(1分)
∴D(c,
b2
2a
),又A
B
=λA
D

AB
AD
(λ≠0)

即A、B、D共线(2分)
∴而A
B
=(-
a2
c
,-b),A
D
=(c-
a2
c
b2
2a
)
?,
?∴-
a2
c
b2
2a
-(-b)•(c-
a2
c
)=0
得a=2b
∴e=
c
a
=
1+(
b
a
)2=
1+
1
4
=
5
2
(4分)?
(2)∵a=2而e=
5
2
b2=1

∴双曲线方程为
x2
4
-y2=1
①(5分)
∴B(0,-1)
假设存在定点C(0,n)使C
M
•C
N
为常数u,设MN的方程为y=kx-1②(6分)
由②代入①得(1-4k2)x2+8kx-8=0
由题意得
1-4k2≠0
△=64k2+32(1-4k2)>0
k2
1
2
k2
1
4

设M(x1,y1),N(x2,y2),
x1+x2=
8k
4k2-1
x1x2=
8
4k2-1
?(8分)
C
M
•C
N
=(x1y1-n)•(x2y2-n)=x1x2+y1y2-n(y1+y2)+n2
?
=(1+k2)x1x2-k(n+1)(x1+x2)+(n+1)2=
8(1+k2)
4k2-1
-
8k2(n+1)
4k2-1
+(n+1)2=u
?
整理得:[4(n+1)2-8n-4u]k2+[8-(n+1)2+u]=0(10分)
对满足k2?
1
2
k2
1
4
的k恒成立

4(n+1)2-8n-4u=0
8-(n+1)2+u=0
解得n=4,u=17
故存在y轴上的定点C(0,4),使C
M
•C
N
为常数17(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知点B(6,0)和点C(-6,0),过点B的直线l与过点C的直线m相交于点A,设直线l的斜率为k1,直线m的斜率为k2
(1)如果k1•k2=-
4
9
,求点A的轨迹方程,并写出此轨迹曲线的焦点坐标;
(2)如果k1•k2=
4
9
,求点A的轨迹方程,并写出此轨迹曲线的离心率;
(3)如果k1•k2=k(k≠0,k≠-1),根据(1)和(2),你能得到什么结论?(不需要证明所得结论)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定点F(2,0),动圆P经过点F且与直线x=-2相切,记动圆的圆心P的轨迹为C.
(Ⅰ)求轨迹C的方程;
(Ⅱ)过点F作倾斜角为60°的直线l与轨迹C交于A(x1,y1)、B(x1,y2)两点,O为坐标原点,点M为轨迹C上一点,若向量
OM
=
OA
OB
,求λ的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知抛物线C:y2=2px(p>0)上横坐标为4的点到焦点的距离为5.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设直线y=kx+b与抛物线C交于两点A(x1,y1),B(x2,y2),且|y1-y2|=a(a为正常数).过弦AB的中点M作平行于x轴的直线交抛物线C于点D,连接AD、BD得到△ABD.
(i)求实数a,b,k满足的等量关系;
(ii)△ABD的面积是否为定值?若为定值,求出此定值;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为e=
3
2
,直线x+y+1=0与椭圆交于P、Q两点,且OP⊥OQ,求该椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,M是抛物线y2=x上的一个定点,动弦ME、MF分别与x轴交于不同的点A、B,且|MA|=|MB|.证明:直线EF的斜率为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的左右顶点分别为A、B.点P双曲线C2
x2
a2
-
y2
b2
=1在第一象限内的图象上一点,直线AP、BP与椭圆C1分别交于C、D点.若△ACD与△PCD的面积相等.
(1)求P点的坐标;
(2)能否使直线CD过椭圆C1的右焦点,若能,求出此时双曲线C2的离心率,若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),离心率为
2
2

(1)求椭圆的标准方程;
(2)设过点F且不与坐标轴垂直的直线l交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点G,求点G的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,抛物线C1:x2=2py(p>0)的焦点为F,椭圆C2
x2
a2
+
y2
b2
=1
(a>b>0)的离心率e=
3
2
,C1与C2在第一象限的交点为P(
3
1
2

(1)求抛物线C1及椭圆C2的方程;
(2)已知直线l:y=kx+t(k≠0,t>0)与椭圆C2交于不同两点A、B,点M满足
AM
+
BM
=
0
,直线FM的斜率为k1,试证明k•k1
-1
4

查看答案和解析>>

同步练习册答案