精英家教网 > 高中数学 > 题目详情

【题目】函数y=ax , x∈[﹣1,2]的最大值与函数f(x)=x2﹣2x+3的最值相等,则a的值为(
A.
B. 或2
C. 或2
D.

【答案】D
【解析】解:f(x)=x2﹣2x+3=(x+1)2+2≥2,
当a>1时,函数y=ax , x∈[﹣1,2]的最大值a2
此时a2=2,解得a=
当0<a<1时,函数y=ax , x∈[﹣1,2]的最大值
此时 =2,解得a=
综上所述a的值为
故选:D.
【考点精析】关于本题考查的函数的最值及其几何意义,需要了解利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下面是关于复数z= 的四个命题:p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.
其中的真命题为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重,大气污染可引起心悸、呼吸困难等心肺疾病,为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查,得到如下的列联表.

患心肺疾病

不患心肺疾病

合计

5

10

合计

50

已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
(3)已知在患心肺疾病的10位女性中,有3位又患有胃病,现在从患心肺疾病的10位女性中,选出3名进行其它方面的排查,记选出患胃病的女性人数为ξ,求ξ的分布列、数学期望以及方差.
下面的临界值表仅供参考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

K

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数=ex(exa)﹣a2x

(1)讨论的单调性;

(2)若,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为研究心理健康与是否是留守儿童的关系,某小学在本校四年级学生中抽取了一个110人的样本,其中留守儿童有40人,非留守儿童有70人,对他们进行了心理测试,并绘制了如图的等高条形图,试问:能否在犯错误的概率不超过0.001的前提下认为心理健康与是否是留守儿童有关系?
参考数据:

P(K2>k)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2= (n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人准备报考某大学,假设甲考上的概率为 ,甲,丙两都考不上的概率为 ,乙,丙两都考上的概率为 ,且三人能否考上相互独立.
(1)求乙、丙两人各自考上的概率;
(2)设X表示甲、乙、丙三人中考上的人数与没考上的人数之差的绝对值,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直角△ABC,AB=AC=3,P,Q分别为边AB,BC上的点,M,N是平面上两点,若 + =0,( + =0, =3 ,且直线MN经过△ABC的外心,则 =(
A.
B.
C.1
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是函数 的两个极值点.

(1)若,求函数的解析式;

(2)若,求的最大值;

(3)设函数,当时,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足:f′(x)>1﹣f(x),f(0)=3,f′(x)是f(x)的导函数,则不等式exf(x)>ex+2(其中e为自然对数的底数)的解集为(
A.{x|x>0}
B.{x|x<0}
C.{x|x<﹣1或x>1}
D.{x|x<﹣1或0<x<1}

查看答案和解析>>

同步练习册答案