【题目】已知直线经过点A,求:
(1)直线在两坐标轴上的截距相等的直线方程;
(2)直线与两坐标轴的正半轴围成三角形面积最小时的直线方程.
科目:高中数学 来源: 题型:
【题目】某学校为加强学生的交通安全教育,对学校旁边,两个路口进行了8天的检测调查,得到每天各路口不按交通规则过马路的学生人数(如茎叶图所示),且路口数据的平均数比路口数据的平均数小2.
(1)求出路口8个数据中的中位数和茎叶图中的值;
(2)在路口的数据中任取大于35的2个数据,求所抽取的两个数据中至少有一个不小于40的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1) 若函数f(x)=|4x-x2|+a有4个零点,求实数a的取值范围;
(2) 已知函数f(x)=x2+2mx+3m+4.
① 若函数f(x)有且仅有一个零点,求实数m的值;
若函数f(x)有两个零点且两个零点均比-1大,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】统计表明,某种型号的汽车在匀速行驶中每小时耗油量(升)关于行驶速度(千米/小时)的函数解析式可以表示为: ,已知甲、乙两地相距100千米.
(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为,山区边界曲线为,计划修建的公路为,如图所示,为的两个端点,测得点到的距离分别为5千米和40千米,点到的距离分别为20千米和2.5千米,以所在的直线分别为轴,建立平面直角坐标系,假设曲线符合函数(其中为常数)模型.
(1)求的值;
(2)设公路与曲线相切于点,的横坐标为.
①请写出公路长度的函数解析式,并写出其定义域;
②当为何值时,公路的长度最短?求出最短长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校90名专职教师的年龄状况如下表:
年龄 | 35岁以下 | 35~50岁 | 50岁以上 |
人数 | 45 | 30 | 15 |
现拟采用分层抽样的方法从这90名专职教师中抽取6名老、中、青教师下乡支教一年.
(Ⅰ)求从表中三个年龄段中分别抽取的人数;
(Ⅱ)若从抽取的6个教师中再随机抽取2名到相对更加边远的乡村支教,计算这两名教师至少有一个年龄是35~50岁教师的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若,且在上单调递增,求实数的取值范围;
(2)是否存在实数,使得函数在上的最小值为1?若存在,求出实数的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图象的一条对称轴是直线
(1)求φ;
(2)求函数y=f(x)的单调递增区间;
(3)求函数y=f(x)在区间上的值域。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com