【题目】某学校为加强学生的交通安全教育,对学校旁边
,
两个路口进行了8天的检测调查,得到每天各路口不按交通规则过马路的学生人数(如茎叶图所示),且
路口数据的平均数比
路口数据的平均数小2.
![]()
(1)求出
路口8个数据中的中位数和茎叶图中
的值;
(2)在
路口的数据中任取大于35的2个数据,求所抽取的两个数据中至少有一个不小于40的概率.
【答案】(1)
,
;(2)
.
【解析】
试题分析:(1)由茎叶图可得
路口
个数据中
为最中间两个数,由此计算中位数,又
路口
个数据的平均数为
,可得
;(2)
在路口的数据中任取
个大于
的数据,有
种可能,其中“至少有一次抽取的数据不小于
”的情况有
种,故所求概率为
.
试题解析:(1)
路口8个数据的中位数为
.
∵
路口8个数据的平均数为
,
∴
路口8个数据的平均数为36,
∴
,
.
(2)
在路口的数据中任取2个大于35的数据,有如下10种可能结果:
(36,37),(36,38),(36,42),(36,45),(37,38),(37,42),(37,45),
(38,42),(38,45),(42,45).
其中“至少有一次抽取的数据不小于40”的情况有如下7种:
(36,42),(36,45),(37,42),(37,45),(38,42),(38,45),(42,45).
故所求的概率为
科目:高中数学 来源: 题型:
【题目】选修4—1:几何证明选讲
如图,已知圆
是
的外接圆,
,
是
边上的高,
是圆
的直径,过点
作圆
的切线交
的延长线于点
.
![]()
(Ⅰ)求证:
;
(Ⅱ)若
,求
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
(
)的右焦点为
,且椭圆
上一点
到其两焦点
,
的距离之和为
.
(1)求椭圆
的标准方程;
(2)设直线
:
(
)与椭圆
交于不同两点
,
,且
,若点
满足
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
“健步走”是一种方便而又有效的锻炼方式,李老师每天坚持“健步走”,并用计步器进行统计.他最近8天“健步走”步数的条形统计图及相应的消耗能量数据表如下:
![]()
(I)求李老师这8天“健步走”步数的平均数;
(II)从步数为16千步,17千步,18千步的6天中任选2天,设李老师这2天通过“健步走”消耗的能量和为
,求
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点为
,上顶点为
,短轴长为2,
为原点,直线
与椭圆
的另一个交点为
,且
的面积是
的面积的3倍.
![]()
(1)求椭圆
的方程;
(2)直线
与椭圆
相交于
两点,若在椭圆
上存在点
,使
为平行四边形,求
取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD的底面为平行四边形,PD⊥平面ABCD,M为PC中点.
![]()
(1)求证:AP∥平面MBD;
(2)若AD⊥PB,求证:BD⊥平面PAD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,已知曲线
(
为参数),在以
为极点,
轴正半轴为极轴的极坐标系中,曲线
,曲线
.
(1)求曲线
与
的交点
的直角坐标;
(2)设点
,
分别为曲线
上的动点,求
的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com