精英家教网 > 高中数学 > 题目详情
已知椭圆的离心率为,并且直线是抛物线的一条切线。
(1)求椭圆的方程
(2)过点的动直线交椭圆两点,试问:在直角坐标平面上是否存在一个定点,使得以为直径的圆恒过点?若存在求出的坐标;若不存在,说明理由。
(1)所求椭圆方程为
(2)在直角坐标平面上存在一个定点T(0,1)满足条件    
本题考查了椭圆,抛物线与直线的综合运用,另外,还结合了向量知识,综合性强,须认真分析
I)先跟据直线y=x+b是抛物线C2:y2=4x的一条切线,求出b的值,再由椭圆离心率为 ,求出a的值,则椭圆方程可得.
(Ⅱ)先假设存在一个定点T,使得以AB为直径的圆恒过定点,再用垂直时,向量 的数量积为0,得到关于直线斜率k的方程,求k,若能求出,则存在,若求不出,则不存在.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)(理科)已知椭圆,过焦点且垂直于长轴的弦长为1,且焦点与短轴两端点构成等边三角形.
(1)求椭圆的方程;
(2)过点的直线交椭圆于两点,交直线于点,且,,
求证:为定值,并计算出该定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

,点,动点满足,则点的轨迹方程是  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)椭圆的左、右焦点分别为,直线经过点与椭圆交于两点。
(1)求的周长;
(2)若的倾斜角为,求的面积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F是椭圆(a>b>0)的左焦点, P是椭圆上的一点, PF⊥x轴, O
∥AB(O为原点), 则该椭圆的离心率是 (        )
 
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知P、Q是椭圆3x2+5y2=1上满足∠POQ=900的两个动点,则|OP|2+|OQ|2=(  )
A.8B.C.D.无法确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆C的长轴长为2,两准线间的距离为16,则椭圆的离心率e为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
设椭圆的离心率为=,点是椭圆上的一点,且点到椭圆两焦点的距离之和为4.
(1)求椭圆的方程;
(2)椭圆上一动点关于直线的对称点为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是把坐标平面上的点的横坐标伸长为原来的4倍,纵坐标伸长为原来的3倍的伸压变换,则圆的作用下的新曲线的方程是       

查看答案和解析>>

同步练习册答案