精英家教网 > 高中数学 > 题目详情
f(x)=-
1
2
x2+bln(x+2)在(-1,+∞)上单调递减,则b的取值范围是(  )
A.(-∞,-1)B.(-1,+∞)C.(-∞,-1]D.[-1,+∞)
由x+2>0,得x>-2,所以函数f(x)=-
1
2
x2+bln(x+2)的定义域为(-2,+∞),
再由f(x)=-
1
2
x2+bln(x+2),得:f′(x)=-x+
b
x+2
=-
x2+2x-b
x+2

要使函数f(x)在其定义域内是单调减函数,则f′(x)在(-1,+∞)上恒小于等于0,
因为x+2>0,
令g(x)=x2+2x-b,则g(x)在(-1,+∞)上恒大于等于0,
函数g(x)开口向上,且对称轴为x=-1,
所以只有当△=22+4×b≤0,即b≤-1时,g(x)≥0恒成立.
所以,使函数f(x)在其定义域内是单调减函数的b的取值范围是(-∞,-1].
故答案为:C
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
12
x2-alnx(a>0)
(1)若a=2,求f(x)在(1,f(1))处的切线方程;
(2)若f(x)在区间(1,e)上恰有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
12
x2+alnx(a∈R).
(Ⅰ)若函数f(x)的图象在x=2处的切线方程为y=x+b,求a,b的值;
(Ⅱ)若函数f(x)在(1,+∞)上为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
12
x2
+cosx,则f(x)取得极值时的x值为
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线f(x)=
12
x2
+4lnx上切线斜率所构成的函数的极小值点是
x=2
x=2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•张掖模拟)已知函数f(x)=
1
2
x2+(ae-4)x+2lnx,g(x)=ax(2-lnx)(其中e为自然对数的底数,常数a≠0).
(1)若对任意x>0,g(x)≤1恒成立,求正实数a的取值范围;
(2)在(1)的条件下,当a取最大值时,试讨论函数f(x)在区间[
1
e
,e]上的单调性;
(3)求证:对任意的n∈N*,不等式ln
2n
n!
1
12
n3-
5
8
n2+
31
24
n
成立.

查看答案和解析>>

同步练习册答案