精英家教网 > 高中数学 > 题目详情
当x在实数集R上任取值时,函数f(x)相应的值等于2x、2、-2x三个之中最大的那个值.
(1)求f(0)与f(3);
(2)画出f(x)的图象,写出f(x)的解析式;
(3)证明f(x)是偶函数;
(4)写出f(x)的值域.
(1)f(0)=2,f(3)=6.
(2)f(x)=
-2x(x<-1)
2(-1≤x≤1)
2x(x>1)

(3)当x>1时,-x<-1,所以f(-x)=-2(-x)=2x,f(x)=2x,有f(-x)=f(x);
当x<-1时,-x>1,所以f(-x)=2(-x)=-2x,f(x)=-2x,有f(-x)=f(x);
当-1≤x≤1时,f(-x)=2=f(x).
综上所述,对定义域中任意一个自变量x都有f(-x)=f(x)成立.
所以f(x)是偶函数.
(4)观察图象得,函数的值域为:[2,+∞).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

有意义,,且成立的充要条件是
(1)求的值;
(2)当时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义在R上的函数,当x>0时,,且对任意的ab∈R,有fa+b)=fa)·fb).
(1)求证:f(0)=1;
(2)求证:对任意的x∈R,恒有fx)>0;
(3)求证:fx)是R上的增函数;
(4)若fx)·f(2xx2)>1,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
-x+1,x∈(-∞,0)
2x,x∈[0,+∞)

(1)请画出函数图象;
(2)根据图象写出函数单调递增区间和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若函数f(x),g(x)满足g(x-y)=g(x)g(y)+f(x)f(y),并且f(0)=0,f(-1)=-1,f(1)=1.
(1)证明:f2(x)+g2(x)=g(0).
(2)求g(0),g(1),g(-1),g(2)的值.
(3)判断f(x),g(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若存在实数x∈[2,4],使不等式x2-2x-2-m<0成立,则m的取值范围为             .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)=
x2,0≤x<1
2-x,1≤x≤2
的图象与x轴所围成的封闭图形的面积等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

则不等式的解集为      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0,x*]上单调递增,在[x*,1]上单调递减,则称f(x)为[0,1]上的单峰函数,x*为峰点,包含峰点的区间为含峰区间.对任意的[0,1]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法.
(I)证明:对任意的∈(O,1),,若f()≥f(),则(0,)为含峰区间:若f()f(),则为含峰区间:
(II)对给定的r(0<r<0.5),证明:存在∈(0,1),满足,使得由(I)所确定的含峰区间的长度不大于0.5+r:
(III)选取∈(O,1),,由(I)可确定含峰区间为,在所得的含峰区间内选取,由类似地可确定一个新的含峰区间,在第一次确定的含峰区间为(0,)的情况下,试确定的值,满足两两之差的绝对值不小于0.02,且使得新的含峰区间的长度缩短到0. 34(区间长度等于区间的右端点与左端点之差)

查看答案和解析>>

同步练习册答案