精英家教网 > 高中数学 > 题目详情

如图,在平面直角坐标系xoy中,抛物线yx 2x-10与x轴的交点为A,与y轴的交点为点B,过点Bx轴的平行线BC,交抛物线于点C,连结AC.现有两动点PQ分别从OC两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动.线段OCPQ相交于点D,过点DDEOA,交CA于点E,射线QEx轴于点F.设动点PQ移动的时间为t(单位:秒)

(1)求ABC三点的坐标和抛物线的顶点坐标;

(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;

(3)当t∈(0)时,△PQF的面积是否总为定值?若是,求出此定值;若不是,请说明理由;

(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.

 


(1)在yx 2x-10中,令y=0,得x 2-8x-180=0.

解得x=-10或x=18,∴A(18,0).········································ 1分

yx 2x-10中,令x=0,得y=-10.

B(0,-10).·························· 2分

BCx轴,∴点C的纵坐标为-10.

由-10=x 2x-10得x=0或x=8.

C(8,-10).························· 3分

yx 2x-10=(x-4)2

∴抛物线的顶点坐标为(4,-).············································· 4分

(2)若四边形PQCA为平行四边形,由于QCPA,故只要QCPA即可.

QCtPA=18-4t,∴t=18-4t

解得t.······································································· 6分

(3)设点P运动了t秒,则OP=4tQCt,且0<t<4.5,说明点P在线段OA上,且不与点OA重合.

QCOP,     ∴

同理QCAF,∴,即

AF=4tOP

PFPAAFPAOP=18.················································ 8分

SPQF PF·OB×18×10=90

∴△PQF的面积总为定值90.·················································· 9分

(4)设点P运动了t秒,则P(4t,0),F(18+4t,0),Q(8-t,-10)  t(0,4.5).

PQ 2=(4t-8+t)2+10 2=(5t-8)2+100

FQ 2=(18+4t-8+t)2+10 2=(5t+10)2+100.

①若FPFQ,则18 2=(5t+10)2+100.

即25(t+2)2=224,(t+2)2

∵0≤t≤4.5,∴2≤t+2≤6.5,∴t+2=

t-2.································································· 11分

②若QPQF,则(5t-8)2+100=(5t+10)2+100.

即(5t-8)2=(5t+10)2,无0≤t≤4.5的t满足.························· 12分

③若PQPF,则(5t-8)2+100=18 2

即(5t-8)2=224,由于≈15,又0≤5t≤22.5,

∴-8≤5t-8≤14.5,而14.5 2=()2<224.

故无0≤t≤4.5的t满足此方程.············································· 13分

注:也可解出t<0或t>4.5均不合题意,

故无0≤t≤4.5的t满足此方程.

综上所述,当t-2时,△PQF为等腰三角形.··················· 14分

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在△OAB中,点P是线段OB及线段AB延长线所围成的阴影区域(含边界)的任意一点,且
OP
=x
OA
+y
OB
则在直角坐标平面内,实数对(x,y)所示的区域在直线y=4的下侧部分的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

1、如图,在直角坐标平面内有一个边长为a,中心在原点O的正六边形ABCDEF,AB∥Ox.直线L:y=kx+t(k为常数)与正六边形交于M、N两点,记△OMN的面积为S,则函数S=f(t)的奇偶性为
偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在直角坐标平面内有一个边长为a、中心在原点O的正六边形ABCDEF,AB∥Ox.直线L:y=kx+t(k为常数)与正六边形交于M、N两点,记△OMN的面积为S,则函数S=f(t)的奇偶性为(  )
A、偶函数B、奇函数C、不是奇函数,也不是偶函数D、奇偶性与k有关

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•海珠区一模)如图,在直角坐标平面内,射线OT落在60°的终边上,任作一条射线OA,OA落在∠xOT内的概率是
1
6
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标中,一定长m的线段,其端点AB分别在x轴、y轴上滑动,设点M满足(λ是大于0,且不等于1的常数).

试问:是否存在定点E、F,使|ME|、|MB|、|MF|成等差数列?若存在,求出E、F的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案