精英家教网 > 高中数学 > 题目详情

某网站欲调查网民对当前网页的满意程度,在登录的所有网民中,收回有效帖子
50000份,其中持各种态度的份数如下表所示.

很满
满意
一般
不满意
10800
12400
15600
11200
为了调查网民的具体想法和意见,以便决定如何更改才能使网页更完美,打算从中抽选500份,为使样本更具有代表性,每类帖子中各应抽选出多少份?

首先确定抽取比例,然后再根据各层份数确定各层要抽取的份数.
=

故四种态度应分别抽取108、124、156、112份进行调查
=108,=124,=156,=112

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)一个容量为M的样本数据,其频率分布表如下.
(Ⅰ)表中a=     ,b =     
(Ⅱ)画出频率分布直方图;
(Ⅲ)用频率分布直方图,求出总体的众数及平均数的估计值.
频率分布表                               

分组
频数
频率
频率/组距
(10,20]
2
0.10
0.010
(20,30]
3
0.15
0.015
(30,40]
4
0.20
0.020
(40,50]
a
b
0.025
(50,60]
4
0.20
0.020
(60, 70]
2
0.10
0.010
 
频率分布直方图

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.

(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?
(2)在(1)的条件下,该县决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)某班同学利用暑期进行社会实践,对岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:

(Ⅰ)补全频率分布直方图并求的值;
(Ⅱ)从年龄段在的“低碳族”中采用分层抽样法抽取人参加户外低碳体验活动,其中选取人作为领队,求选取的名领队中恰有1人年龄在岁的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


调查在2~3级风时的海上航行中男女乘客的晕船情况,共调查了71人,其中女性34人,男性37人。女性中有10人晕船,另外24人不晕船;男性中有12人晕船,另外25人不晕船。
判断晕船是否与性别有关系。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

由世界自然基金会发起的“地球1小时”活动,已发展成为最有影响力的环保活动之一,今年的参与人数再创新高.然而也有部分公众对该活动的实际效果与负面影响提出了疑问.对此,某新闻媒体进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:

 
支持
保留
不支持
20岁以下
800
450
200
20岁以上(含20岁)
100
150
300
(Ⅰ)在所有参与调查的人中,用分层抽样的方法抽取个人,已知从“支持”态度的人中抽取了45人,求的值;
(Ⅱ)在持“不支持”态度的人中,用分层抽样的方法抽取5人看成一个总体,从这5人中任意选取2人,求至少有人20岁以下的概率;
(Ⅲ)在接受调查的人中,有8人给这项活动打出的分数如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8个人打出的分数看作一个总体,从中任取个数,求该数与总体平均数之差的绝对值超过0.6的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂对某产品的产量与单位成本的资料分析后有如下数据:

月    份
1
2
3
4
5
6
产量x千件
2
3
4
3
4
5
单位成本y元/件
73
72
71
73
69
68
(Ⅰ) 画出散点图,并判断产量与单位成本是否线性相关。
(Ⅱ) 求单位成本y与月产量x之间的线性回归方程。(其中已计算得:,结果保留两位小数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)某校从参加高一年级期末考试的学生中抽出60名学生,将其物理成绩(均为整数)分成六段后画出如下频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ)估计这次考试的众数m与中位数n(结果保留一位小数);
(Ⅱ) 估计这次考试的及格率(60分及以上为及格)和平均分.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(本小题满分12分)
某中学研究性学习小组,为了考察高中学生的作文水平与爱看课外书的关系,在本校高三年级随机调查了 50名学生.调査结果表明:在爱看课外书的25人中有18人作文水平好,另7人作文水平一般;在不爱看课外书的25人中有6人作文水平好,另19人作文水平一般.
(Ⅰ)试根据以上数据完成以下2×2列联表,并运用独立性检验思想,指出有多大把握认为中学生的作文水平与爱看课外书有关系?
高中学生的作文水平与爱看课外书的2×2列联表

 
爱看课外书
不爱看课外书
总计
作文水平
 
 
 
作文水平一般
 [来源:学。科。网Z。X。X。K]
 
 
总计
 
 
 
(Ⅱ)将其中某5名爱看课外书且作文水平好的学生分别编号为1、2、3、4、5,某5名爱看课外书且作文水平一般的学生也分别编号为1、2、3、4、5,从这两组学生中各任选1人进行学习交流,求被选取的两名学生的编号之和为3的倍数或4的倍数的概率.
参考公式:,其中.
参考数据:
[来源:学*科*网]
0.10
0.05
0.025
0.010
0.005
0.001

2.706
3.841
5.024
6.635
7.879
10.828
 

查看答案和解析>>

同步练习册答案