2£®ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬ÓÒ¶¥µãAÊÇÅ×ÎïÏßy2=8xµÄ½¹µã£®¹ýD£¨1£¬0£©Ö±ÏßlÓëÍÖÔ²CÏཻÓÚP£¬QÁ½µã£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©Èô$\overrightarrow{AM}=\overrightarrow{AP}+\overrightarrow{AQ}$£¬ÇÒµãM¹ØÓÚÖ±ÏßlµÄ¶Ô³ÆµãNÔÚyÖáÉÏ£¬ÇóÖ±ÏßlµÄ·½³Ì£®

·ÖÎö £¨¢ñ£©È·¶¨ÍÖÔ²µÄ¼¸ºÎÁ¿£¬¼´¿ÉÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬Ö±Ïßl£ºy=k£¨x-1£©ÓëÍÖÔ²CÁªÁ¢£¬È·¶¨MµÄ×ø±ê£¬½øÒ»²½¿ÉµÃMNÖеã×ø±ê£¬ÓÉÓÚM£¬N¹ØÓÚÖ±Ïßl¶Ô³Æ£¬ËùÒÔM£¬NËùÔÚÖ±ÏßÓëÖ±Ïßl´¹Ö±£¬¼´¿ÉÇókµÄÖµ£®

½â´ð ½â£º£¨¢ñ£©Å×ÎïÏßy2=8x£¬
ËùÒÔ½¹µã×ø±êΪ£¨2£¬0£©£¬¼´A£¨2£¬0£©£¬
ËùÒÔa=2£®
ÓÖÒòΪe=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬ËùÒÔc=$\sqrt{3}$£®
ËùÒÔb=1£¬
ËùÒÔÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}$=1£®   ¡­£¨4·Ö£©
£¨¢ò£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬
ÒòΪ$\overrightarrow{AM}=\overrightarrow{AP}+\overrightarrow{AQ}$£¬
ËùÒÔ$\overrightarrow{AM}$=£¨x1+x2-4£¬y1+y2£©£¬
ËùÒÔM£¨x1+x2-2£¬y1+y2£©£®
ÓÉÖ±Ïßl£ºy=k£¨x-1£©ÓëÍÖÔ²CÁªÁ¢£¬µÃ£¨4k2+1£©x2-8k2x+4k2-4=0£¬
µÃx1+x2-2=-$\frac{2}{4{k}^{2}+1}$£¬y1+y2=$\frac{-2k}{4{k}^{2}+1}$£¬
¼´M£¨-$\frac{2}{4{k}^{2}+1}$£¬$\frac{-2k}{4{k}^{2}+1}$£©£®
ÉèN£¨0£¬y3£©£¬ÔòMNÖеã×ø±êΪ£¨-$\frac{1}{4{k}^{2}+1}$£¬$\frac{-k}{4{k}^{2}+1}$+$\frac{{y}_{3}}{2}$£©£¬
ÒòΪM£¬N¹ØÓÚÖ±Ïßl¶Ô³Æ£¬
ËùÒÔMNµÄÖеãÔÚÖ±ÏßlÉÏ£¬
ËùÒÔ$\frac{-k}{4{k}^{2}+1}$+$\frac{{y}_{3}}{2}$=k£¨-$\frac{1}{4{k}^{2}+1}$-1£©£¬½âµÃy3=-2k£¬¼´N£¨0£¬-2k£©£®
ÓÉÓÚM£¬N¹ØÓÚÖ±Ïßl¶Ô³Æ£¬ËùÒÔM£¬NËùÔÚÖ±ÏßÓëÖ±Ïßl´¹Ö±£¬
ËùÒÔ$\frac{\frac{-2k}{4{k}^{2}+1}-£¨-2k£©}{\frac{-2}{4{k}^{2}+1}-0}$•k=-1£¬½âµÃk=¡À$\frac{\sqrt{2}}{2}$£¬
Òò´ËÖ±ÏßlµÄ·½³ÌΪy=¡À$\frac{\sqrt{2}}{2}$£¨x-1£©£®¡­£¨14·Ö£©

µãÆÀ ±¾Ì⿼²éÅ×ÎïÏߵļ¸ºÎÐÔÖÊ£¬¿¼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÔÚ¡÷ABCÖУ¬½ÇA¡¢B¡¢CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬Èôa=1£¬sinA=$\frac{1}{3}$£¬Ôò$\frac{a+b+c}{sinA+sinB+sinC}$=
3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªÖ±ÏßlÖ®·½³ÌΪ$\sqrt{3}$x+y+1=0£¬ÔòÖ±ÏßµÄÇãб½ÇΪ£¨¡¡¡¡£©
A£®120¡ãB£®150¡ãC£®60¡ãD£®30¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Èô²»µÈʽx2-2ax+a£¾0£¬¶Ôx¡ÊRºã³ÉÁ¢£¬Ôò¹ØÓÚtµÄ²»µÈʽa2t+1£¼a${\;}^{{t^2}+2t-3}}$£¼1µÄ½âΪ£¨1£¬2£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖªf£¨10x£©=x£¬Ôòf£¨100£©=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Ä³°à¼¸Î»Í¬Ñ§×é³ÉÑо¿ÐÔѧϰС×飬¶Ô[25£¬55]ËêµÄÈËÈºËæ»ú³éÈ¡nÈ˽øÐÐÁËÒ»´ÎÈÕ³£Éú»îÖÐÊÇ·ñ¾ßÓл·±£ÒâʶµÄµ÷²é£®ÈôÉú»îϰ¹ß¾ßÓл·±£ÒâʶµÄ³ÆÎª¡°»·±£×塱£¬·ñÔò³ÆÎª¡°·Ç»·±£×塱£®
µÃµ½ÈçÏÂͳ¼Æ±í£º
×éÊý·Ö×é»·±£×åÈËȺռ±¾×éµÄƵÂʱ¾×éÕ¼Ñù±¾µÄƵÂÊ
µÚÒ»×é[25£¬30£©1200.60.2
µÚ¶þ×é[30£¬35£©1950.65q
µÚÈý×é[35£¬40£©1000.50.2
µÚËÄ×é[40£¬45£©a0.40.15
µÚÎå×é[45£¬50£©300.30.1
µÚÁù×é[50£¬55]150.30.05
£¨1£©Çóq¡¢n¡¢aµÄÖµ£®
£¨2£©´ÓÄêÁä¶ÎÔÚ[40£¬55]µÄ¡°»·±£×塱ÖвÉÓ÷ֲã³éÑù·¨³éÈ¡7È˲μӻ§Íâ»·±£»î¶¯£¬ÆäÖÐѡȡ2ÈË×÷ΪÁì¶Ó£¬ÇóѡȡµÄ2ÃûÁì¶ÓÖÐÇ¡ÓÐ1ÈËÄêÁäÔÚ[45£¬50£©µÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÏÂÁÐÅжϣ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Æ½ÐÐÓÚͬһֱÏßµÄÁ½Ö±Ï߯½ÐÐ
B£®´¹Ö±ÓÚͬһֱÏßµÄÁ½Ö±Ï߯½ÐÐ
C£®Æ½ÐÐÓÚÍ¬Ò»Æ½ÃæµÄÁ½Æ½Ãæ²»Ò»¶¨Æ½ÐÐ
D£®´¹Ö±ÓÚÍ¬Ò»Æ½ÃæµÄÁ½Æ½ÃæÆ½ÐÐ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®2015Äê12ÔÂ7ÈÕ£¬±±¾©Ê×´ÎÆô¶¯¿ÕÆøÖØÎÛȾºìɫԤ¾¯£®ÆäÓ¦¼±´ëÊ©°üÀ¨£ºÈ«Êз¶Î§ÄÚ½«ÊµÊ©»ú¶¯³µµ¥Ë«ºÅÏÞÐУ¨¼´µ¥ÈÕÖ»Óе¥ºÅ³µ¿ÉÒÔÉÏ·ÐÐÊ»£¬Ë«ÈÕÖ»ÓÐË«ºÅ³µ¿ÉÒÔÉÏ·ÐÐÊ»£©£¬ÆäÖб±¾©µÄ¹«ÎñÓóµÔÚµ¥Ë«ºÅÐÐÊ»µÄ»ù´¡ÉÏ£¬ÔÙͣʻ³µÁ¾×ÜÊýµÄ30%£®ÏÖijµ¥Î»µÄ¹«Îñ³µ£¬Ö°¹¤µÄ˽¼Ò³µÊýÁ¿ÈçÏÂ±í£º
    ¹«Îñ³µ    Ë½¼Ò³µ
   µ¥ºÅ£¨Á¾£©     10    135
   Ë«ºÅ£¨Á¾£©     20    120
¸ù¾ÝÓ¦¼±´ëÊ©£¬12ÔÂ8ÈÕ£¬Õâ¸öµ¥Î»ÐèҪͣʻµÄ¹«Îñ³µºÍ˽¼Ò³µÒ»¹²ÓÐ154Á¾£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖª¼¯ºÏP={4£¬5£¬6}£¬Q={1£¬2£¬3}£¬¶¨ÒåP¨’Q={x|x=p-q£¬p¡ÊP£¬q¡ÊQ}£¬Ôò¼¯ºÏP¨’QµÄËùÓзǿÕÕæ×Ó¼¯µÄ¸öÊýΪ£¨¡¡¡¡£©
A£®32B£®31C£®30D£®ÒÔÉ϶¼²»¶Ô

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸