精英家教网 > 高中数学 > 题目详情
已知O为坐标原点,F为抛物线y2=4x的焦点,A是抛物线上一点,若
OA
AF
=-4,则点A的坐标是
(1,2)或(1,-2)
(1,2)或(1,-2)
分析:先求出抛物线的焦点F(1,0),根据抛物线的方程设A(
y
2
0
4
,y0),然后构成向量
OA
OB
,再由
OA
AF
=-4可求得y0的值,最后可得答案.
解答:解析∵抛物线的焦点为F(1,0),设A(
y
2
0
4
,y0),
OA
=(
y
2
0
4
,y0),
AF
=(1-
y
2
0
4
,-y0),
OA
AF
=-4,得y0=±2,
∴点A的坐标是(1,2)或(1,-2).
故答案为:(1,2)或(1,-2)
点评:本题主要考查抛物线的标准方程.抛物线的标准方程是高考的考点,是圆锥曲线的重要的一部分,要重视复习.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知O为坐标原点,F为椭圆C:x2+
y2
2
=1
在y轴正半轴上的焦点,过F且斜率为-
2
的直线l与C交于A、B两点,点P满足
OA
+
OB
+
OP
=
0

(Ⅰ)证明:点P在C上;
(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知O为坐标原点,F为抛物线y2=4x的焦点,A是抛物线上一点,若
OA
AF
=-4,则点A的坐标是______.

查看答案和解析>>

科目:高中数学 来源:《2.3 抛物线》2013年同步练习2(解析版) 题型:填空题

已知O为坐标原点,F为抛物线y2=4x的焦点,A是抛物线上一点,若=-4,则点A的坐标是   

查看答案和解析>>

科目:高中数学 来源:高考真题 题型:解答题

已知O为坐标原点,F为椭圆C:在y轴正半轴上的焦点,过F且斜率为的直线l与C交于A、B两点,点P满足
(1)证明:点P在C上;
(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上。

查看答案和解析>>

同步练习册答案