精英家教网 > 高中数学 > 题目详情
在△ABC中,a,b,c分别为角A,B,C的对边,满足c=λacosB(λ∈R),
(1)若λ=2,A=30°,求B的值;
(2)若a=2,B=60°,且角C为钝角,求实数λ的取值范围.
分析:(1)将λ=2代入已知等式,利用余弦定理表示出cosB,整理后得到a=b,利用等边对等角即可求出B的度数;
(2)法1:由C为钝角及B的度数,得到A的范围,利用正弦定理列出关系式,表示出b,由c=2λcos60°=λ,利用余弦定理列出关系式,根据λ大于0,即可求出λ的范围;
法2:根据题意得到c=2λcos60°=λ,利用正弦定理表示出c,根据C为钝角,得出A的范围,将C=120°-A代入即可求出λ的范围.
解答:解:(1)λ=2时,c=2acosB=2a•
a2+c2-b2
2ac

整理得:a2=b2,即a=b,
则B=A=30°;
(2)法1:∵C>90°,∴A=180°-B-C=120°-C<30°,
由正弦定理得:bsinA=asinB,即b=
3
sinA
>2
3

又c=2λcos60°=λ,
∴根据余弦定理得:b2=4+λ2-2λ>12,
又λ>0,∴λ>4;
法2:c=2λcos60°=λ,由正弦定理得:csinA=asinC,即c=
2sinC
sinA

∵C>90°,∴A=180°-B-C<30°,
将C=120°-A代人,得:c=λ=
2sin(120°-A)
sinA
=
3
cosA+sinA
sinA
=
3
tanA
+1>4.
点评:此题考查了正弦、余弦定理,正弦、正切函数的图象与性质,熟练掌握定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.满足2acosC+ccosA=b.则sinA+sinB的最大值是(  )
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a<b<c,B=60°,面积为10
3
cm2,周长为20cm,求此三角形的各边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,已知
.
m
=(cos
C
2
,sin
C
2
)
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面积S=
3
3
2
,求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A,B,C为三个内角,若cotA•cotB>1,则△ABC是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)函数的图象是由y=sinx的图象经过如下三步变换得到的:
①将y=sinx的图象整体向左平移
π
6
个单位;
②将①中的图象的纵坐标不变,横坐标缩短为原来的
1
2

③将②中的图象的横坐标不变,纵坐标伸长为原来的2倍.
(1)求f(x)的周期和对称轴;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步练习册答案