精英家教网 > 高中数学 > 题目详情

已知数列{an},{bn}满足:数学公式数学公式数学公式(n∈N*).
(Ⅰ)证明数列{bn}为等比数列.并求数列{an},{bn}的通项公式;
(Ⅱ)记数列{an},{bn}的前n项和分别为Sn,Tn,若对任意的n∈N*都有数学公式,求实数m的最小值.

(Ⅰ)证明:由已知得,…(2分)
,∴2bn+1=bn
,∴
∴{bn}为等比数列.…(4分)
所以,…(6分)
进而.…(7分)
(Ⅱ)解:=4•2n+1…(10分)
对任意的n∈N*成立. …(12分)
∵数列是递减数列,∴
∴m的最小值为. …(14分)
分析:(Ⅰ)利用数列递推式整理变形,利用等比数列的定义,可得数列{bn}为等比数列,从而可求数列{an},{bn}的通项公式;
(Ⅱ)对任意的n∈N*都有,等价于对任意的n∈N*成立,由此可求实数m的最小值.
点评:本题考查数列递推式,考查等比数列的证明,考查数列的通项,考查恒成立问题,正确求通项是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1<0,
an+1
an
=
1
2
,则数列{an}是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,nan+1=2(n十1)an+n(n+1),(n∈N*),
(I)若bn=
ann
+1
,试证明数列{bn}为等比数列;
(II)求数列{an}的通项公式an与前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)已知数列{an}中,an=-4n+5,等比数列{bn}的公比q满足q=an-an-1(n≥2),且b1=a2,则|b1|+|b2|+…+|bn|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+3n+1,则数列{an}的通项公式为
an=
5
      n=1
2n+2
    n≥2
an=
5
      n=1
2n+2
    n≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n,那么它的通项公式为an=
2n
2n

查看答案和解析>>

同步练习册答案