精英家教网 > 高中数学 > 题目详情
已知在△ABC中,AD为∠BAC的平分线,以C为圆心,CD为半径的半圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,EF:FD=4:3.
(1)求∠AED的余弦值.
(2)若BD=10,求△ABC的面积.
分析:(1)求∠AED的余弦值,即求ME:DM,由已知条件,勾股定理,切割线定理的推论可以求出;
(2)根据△ABC的面积公式求出BC,AN的长是关键,根据题意由三角函数及相似比即可求出.
解答:解:(1)连接DM
∵DE是半圆C的直径,∴∠DME=90°
∵FE:FD=4:3,∴可设FE=4x,则FD=3x,∴DE=5x
∵AD平分∠BAC,∴∠BAD=∠DAC
∵∠B=∠CAE
∴∠BAD+∠B=∠DAC+∠CAE
∵∠ADE=∠BAD+∠B
∴∠ADE=∠DAE
∴EA=ED
∵DE是半圆C的直径
∴∠DFE=90°
∴AF=DF
∴AE=DE=5x,AF=FD=3x
∵AF•AD=AM•AE
∴3x(3x+3x)=AM•5x
∴AM=
18
5
x

∴ME=AE-AM=5x-
18
5
x
=
7
5
x

∴cos∠AED=
ME
DE
=
7
25

(2)过A点作AN⊥BE于N
∵cos∠AED=
7
25
,∴sin∠AED=
24
25
,∴AN=
24
25
AE=
24
5
x

在△CAE和△ABE中
∵∠CAE=∠B,∠AEC=∠BEA
∴△CAE∽△ABE
AE
BE
=
CE
AE

∴AE2=BE•CE
∴(5x)2=(10+5x)•
5
2
x
∴x=2
∴AN=
48
5

又BC=BD+DC=10+5=15
∴S△ABC=
1
2
BC•AN=
1
2
×15×
48
5
=72.
点评:本题考查相似三角形的判定,切割线定理,勾股定理,考查三角形面积的计算,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在△ABC中,A>B,且tanA与tanB是方程x2-5x+6=0的两个根.
(Ⅰ)求tan(A+B)的值;
(Ⅱ)若AB=5,求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,a=2
3
,c=6,A=30°
,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,∠A=120°,记
α
=
BA
|
BA
|cosA
+
BC
|
BC
|cosC
β
=
CA
|CA|
cosA
+
CB
|
CB
|sinB
CB
|
CB
|cosB
,则向量
α
β
的夹角为
120°
120°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,a=2
3
,b=6,A=30°,解三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,a,b,c为内角A,B,C所对的边长,r为内切圆的半径,则△ABC的面积S=
1
2
(a+b+c)
•r,将此结论类比到空间,已知在四面体ABCD中,已知在四面体ABCD中,
S1,S2,S3,S4分别为四个面的面积,r为内切球的半径
S1,S2,S3,S4分别为四个面的面积,r为内切球的半径
,则
四面体ABCD的体积V=
1
3
(S1+S2+S3+S4).r
四面体ABCD的体积V=
1
3
(S1+S2+S3+S4).r

查看答案和解析>>

同步练习册答案