精英家教网 > 高中数学 > 题目详情

【题目】已知直线与抛物线相切,且与轴的交点为,点.若动点与两定点所构成三角形的周长为6.

(Ⅰ) 求动点的轨迹的方程;

(Ⅱ) 设斜率为的直线交曲线两点,当,且位于直线的两侧时,证明: .

【答案】(Ⅰ) );(Ⅱ)见解析.

【解析】试题分析:Ⅰ先由判别式为零可得 的值再根据三角形周长可得进而由椭圆定义可得方程;(设直线方程,联立 根据直线斜率公式及韦达定理利用分析法证明即可.

试题解析:(Ⅰ) 因为直线与抛物线相切,所以方程有等根,

,即,所以

又因为动点与定点所构成的三角形周长为6,且

所以

根据椭圆的定义,动点在以为焦点的椭圆上,且不在轴上,

所以,得,则

即曲线的方程为).

(Ⅱ)设直线方程 ,联立

△=-3+12>0,所以, 此时直线与曲线有两个交点,

,则

,不妨取

要证明恒成立,即证明

即证,也就是要证

即证由韦达定理所得结论可得此式子显然成立,

所以成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是数列的前项和, .

(1)求证:数列是等差数列,并求的通项;

(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣2)的定义域为集合A,函数的值域为集合B.
(1)求A∪B;
(2)若集合C={x|a≤x≤3a﹣1},且B∩C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数),

(Ⅰ) 试求曲线在点处的切线l与曲线的公共点个数;(Ⅱ) 若函数有两个极值点,求实数a的取值范围.

(附:当x趋近于0时, 趋向于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校在一次第二课堂活动中,特意设置了过关智力游戏,游戏共五关.规定第一关没过者没奖励,过 关者奖励件小奖品(奖品都一样).下图是小明在10次过关游戏中过关数的条形图,以此频率估计概率.

(Ⅰ)估计小明在1次游戏中所得奖品数的期望值;

(Ⅱ)估计小明在3 次游戏中至少过两关的平均次数;

(Ⅲ)估计小明在3 次游戏中所得奖品超过30件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了引导居民合理用水,居民生活用水实行二级阶梯式水价计量办法,具体如下:第一阶梯,每户居民月用水量不超过12吨,价格为4元/吨;第二阶梯,每户居民月用水量超过12吨,超过部分的价格为8元/吨.为了了解全市居民月用水量的分布情况,通过抽样获得了100户居民的月用水量(单位:吨),将数据按照 ,…, 分成8组,制成了如图1所示的频率分布直方图.

(图1) (图2)

(Ⅰ)求频率分布直方图中字母的值,并求该组的频率;

(Ⅱ)通过频率分布直方图,估计该市居民每月的用水量的中位数的值(保留两位小数);

(Ⅲ)如图2是该市居民张某2016年1~6月份的月用水费(元)与月份的散点图,其拟合的线性回归方程是. 若张某2016年1~7月份水费总支出为312元,试估计张某7月份的用水吨数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形均为菱形, ,且.

(l)求证:

(2)求证:

(3)设,求四面体的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分10分)

已知椭圆 的左焦点为,右焦点为,离心率.的直线交椭圆于两点,且的周长为.

1)求椭圆的方程;

2)设动直线与椭圆有且只有一个公共点,且与直线相交于点.求证:以为直径的圆恒过一定点.并求出点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组,第二组,…,第五组,如图是按上述分组方法得到的频率分布直方图.

(1)根据频率分布直方图,估计这50名学生百米测试成绩的中位数和平均值(精确到);

(2)若从第一、五组中随机取出两个成绩,列举所有选取方法,并求这两个成绩的差的绝对值大于1的概率.

查看答案和解析>>

同步练习册答案