精英家教网 > 高中数学 > 题目详情

【题目】如图, 为圆的直径,点在圆上, ,矩形所在的平面与圆所以的平面互相垂直,已知.

(1)求证:平面平面

(2)当的长为何值时,平面与平面所成的锐二面角的大小为

【答案】(1)见解析(2)当的长为时,平面与平面所成的锐二面角大小为.

【解析】试题分析】(1)先运用线面垂直的判定定理证明线面垂直,再运用面面垂直的判定定理分析推证;(2)依据题设条件建立空间直角坐标系,再运用向量的有关知识及数量积公式分析求解:

解:(1)平面平面

平面平面,∴平面.

平面,∴

又∵为圆的直径,∴,∴平面.

平面,∴平面平面.

(2)设中点为,以为坐标原点, 方向分别为轴、轴、轴方向建立空间直角坐标系(如图).

,则点的坐标为

,又

.

设平面的法向量为,则,即

,解得.∴.

由(1)可知平面,取平面的一个法向量为

,即,解得.

因此,当的长为时,平面与平面所成的锐二面角大小为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)恒成立,求实数的取值范围;

(Ⅲ)求整数的值,使函数在区间上有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品,已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似的表示为:,且每处理一顿二氧化碳得到可利用的化工产品价值为100元.

1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?

2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该单位不亏损?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(Ⅰ)若在其定义域内为单调递增函数,求实数的取值范围;

(Ⅱ)设,且,若在[1e]上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若的解集为,求实数 的值;

(2)当时,解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在坐标原点,焦点在轴上的椭圆,离心率为且过点,过定点的动直线与该椭圆相交于两点.

(1)若线段中点的横坐标是,求直线的方程;

(2)在轴上是否存在点,使为常数?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有两枚均匀的硬币和一枚不均匀的硬币,其中不均匀的硬币抛掷后出现正面的概率为,小华先抛掷这三枚硬币,然后小红再抛掷这三枚硬币.

(1)求小华抛得一个正面两个反面且小红抛得两个正面一个反面的概率;

(2)若用表示小华抛得正面的个数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数).

(1)若函数的图象在处的切线方程为,求 的值;

(2)若时,函数内是增函数,求的取值范围;

(3)当时,设函数的图象与函数的图象交于点,过线段的中点轴的垂线分别交于点,问是否存在点,使处的切线与处的切线平行?若存在,求出的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个正方体的平面展开图及该正方体直观图的示意图如图所示,在正方体中,设BC的中点为M,GH的中点为N。

(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);

(2)证明:直线MN∥平面BDH;

(3)过点M,N,H的平面将正方体分割为两部分,求这两部分的体积比.

查看答案和解析>>

同步练习册答案