精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=x3-6x+5,x∈R.

(1)求函数f(x)的极值;(2)若关于x的方程f(x)=a有三个不同的实根,求实数a的取值范围.

【答案】(1)见解析;(2)

【解析】试题分析:(1)先求出函数的导数,分别令求得的范围,可得函数增区间, 求得的范围,可得函数的减区间,根据函数的单调性,可得函数的极值;(2)方程 有三个实根等价于, 有三个交点,画出函数的大致图象,结合图象与函数的极值可求出取值范围.

试题解析:(1)f′(x)=3x2-6,令f′(x)=0,

解得x1=-,x2.

因为当x>或x<-时,f′(x)>0;

当-<x<时,f′(x)<0.

所以,f(x)的单调递增区间为(-∞,-)和(,+∞);

单调递减区间为(-).

当x=-时,f(x)有极大值5+4

当x=时,f(x)有极小值5-4.

(2)由(1)的分析知y=f(x)的图象的大致形状及走向如图所示.

所以,当5-4<a<5+4时,

直线y=a与y=f(x)的图象有三个不同的交点,

即方程f(x)=a有三个不同的实根.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知奇函数fx)=a-aRe为自然对数的底数).

(1)判定并证明fx)的单调性;

(2)若对任意实数xfx)>m2-4m+2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市居民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如图频率分布直方图:
(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?
(2)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=2x33(a1)x2+6ax+8,其中a∈R.已知f(x)在x=3处取得极值.

(1)求f(x)的解析式; (2)求f(x)在点A(1,16)处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的序号是__________________.(写出所有正确的序号)

正切函数在定义域内是增函数;

已知函数的最小正周期为,的图象向右平移个单位长度,所得图象关于轴对称,的一个值可以是

,三点共线;④函数的最小值为

函数上是增函数,的取值范围是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD.

(1)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;
(2)证明:平面PAB⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn,已知a1=2,a2为整数,且a3∈[3,5].

(1)求{an}的通项公式;

(2)设,求数列{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,直线的极坐标方程为,现以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,曲线的参数方程为为参数).

(1)求直线的直角坐标方程和曲线的普通方程;

(2)若曲线为曲线关于直线的对称曲线,点分别为曲线、曲线上的动点,点坐标为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线)与轴交于点,动圆与直线相切,并且与圆相外切,

1)求动圆的圆心的轨迹的方程;

2)若过原点且倾斜角为的直线与曲线交于两点,问是否存在以为直径的圆经过点?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案