【题目】已知奇函数f(x)=a-(a∈R,e为自然对数的底数).
(1)判定并证明f(x)的单调性;
(2)若对任意实数x,f(x)>m2-4m+2恒成立,求实数m的取值范围.
【答案】(1)上的递增函数,证明见解析;(2).
【解析】
(1)用单调性定义证明;
(2)先用奇函数性质求出a=1,再根据单调性求出函数最值,最后用最值使不等式成立即可.
解:(1)f(x)是R上的单调递增函数.
证明:因f(x)的定义域为R,任取x1,x2∈R且x1<x2.
则f(x2)-f(x1)=-=.
∵y=ex为增函数,∴>>0,∴+1>0,+1>0.
∴f(x2)-f(x1)>0,∴f(x2)>f(x1),
故f(x)是R上的递增函数.
(2)∵f(x)为奇函数,∴f(-x)=-f(x),
∴a-=-a+,∴2a=2,∴a=1,
∴f(x)=1-,
令t=ex+1,∵ex>0,∴t>1,
又g(t)=1-在(1,+∞)上为增函数,
∴-1<g(t)<1,即-1<f(x)<1,
当f(x)>m2-4m+2对任意实数x恒成立,
有m2-4m+2≤-1,即m2-4m+3≤0,
∴1≤m≤3,
故实数m的取值范围是[1,3].
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sin2x-2sin2x-a.
①若f(x)=0在x∈R上有解,则a的取值范围是______;
②若x1,x2是函数y=f(x)在[0,]内的两个零点,则sin(x1+x2)=______
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面使用类比推理正确的是( )
A. 由“a(b+c)=ab+ac”类比推出“cos(α+β)=cosα+cosβ”
B. 由“若3a<3b,则a<b”类比推出“若ac<bc,则a<b”
C. 由“平面中垂直于同一直线的两直线平行”类比推出“空间中垂直于同一平面的两平面平行”
D. 由“等差数列{an}中,若a10=0,则a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N*)”类比推出“在等比数列{bn}中,若b9=1,则有b1b2…bn=b1b2…b17-n(n<17,n∈N*)”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+a|(a>-2)的图象过点(2,1).
(1)求实数a的值;
(2)设,在如图所示的平面直角坐标系中作出函数y=g(x)的简图,并写出(不需要证明)函数g(x)的定义域、奇偶性、单调区间、值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x+ax2+b·ln x,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2.
(1)求a,b的值;
(2)证明:f(x)≤2x-2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2+2ax+3-b(a≠0,b>0)在[0,3]上有最小值2,最大值17,函数g(x)=.
(l)求函数g(x)的解析式;
(2)证明:对任意实数m,都有g(m2+2)≥g(2|m|+l);
(3)若方程g(|log2x-1|)+3k(-1)=0有四个不同的实数解,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C1的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.
(1)把C1的参数方程化为极坐标方程;
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com