分析 (1)直接由数列递推式结合a2=6依次求得a1,a3,a4;
(2)由数列前4项归纳猜测an=n(2n-1),然后利用数学归纳法证明;
(3)由$\frac{1}{{a}_{n}}=\frac{1}{n(2n-1)}<\frac{1}{n(2n-2)}=\frac{1}{2}(\frac{1}{n-1}-\frac{1}{n})$(n≥2),作和后放缩得答案.
解答 (1)解:当n=1时,$\frac{{a}_{2}+{a}_{1}-1}{{a}_{2}-{a}_{1}+1}=\frac{6+{a}_{1}-1}{6+{a}_{1}+1}=1$,a1=1;
当n=2时,$\frac{{a}_{3}+{a}_{2}-1}{{a}_{3}-{a}_{2}+1}=2$,a3=15;
当n=3时,$\frac{{a}_{4}+{a}_{3}-1}{{a}_{4}-{a}_{3}+1}=3$,a4=28.
∴a1=1,a3=15,a4=28;
(2)解:猜想an=n(2n-1).
证明:当n=1时,a1=1×(2×1-1)=1成立,当n=2时,a2=2×(2×2-1)=6成立;
假设当n=k(k≥2)时结论成立,即ak=k(2k-1),
那么,当n=k+1时,由$\frac{{a}_{k+1}+{a}_{k}-1}{{a}_{k+1}-{a}_{k}+1}=k$,得$\frac{{a}_{k+1}+k(2k-1)-1}{{a}_{k+1}-k(2k-1)+1}=k$,
∴$k{a}_{k+1}-2{k}^{3}+{k}^{2}+k={a}_{k+1}+2{k}^{2}-k-1$,
得ak+1=(k+1)(2k+1),即n=k+1时,结论成立.
综上,an=n(2n-1);
(3)证明:∵$\frac{1}{{a}_{n}}=\frac{1}{n(2n-1)}<\frac{1}{n(2n-2)}=\frac{1}{2}(\frac{1}{n-1}-\frac{1}{n})$(n≥2).
∴Sn=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$<1+$\frac{1}{2}(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n-1}-\frac{1}{n})=1+\frac{1}{2}(1-\frac{1}{n})<\frac{3}{2}$.
点评 本题考查数列递推式,考查了利用数学归纳法证明与自然数有关的命题,训练了利用放缩法证明数列不等式,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 100个吸烟者中至少有99人患有肺癌 | |
| B. | 1个人吸烟,那么这个人有99%的概率患有肺癌 | |
| C. | 在100个吸烟者中一定有患肺癌的人 | |
| D. | 在100个吸烟者中可能一个患肺癌的人也没有 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 有95%的把握认为两者有关 | |
| B. | 约有95%的心脏病患者使用药物有作用 | |
| C. | 有99%的把握认为两者有关 | |
| D. | 约有99%的心脏病患者使用药物有作用 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com