精英家教网 > 高中数学 > 题目详情

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按31天算,记该女子一个月中的第n天所织布的尺数为an , 则 的值为( )
A.
B.
C.
D.

【答案】B
【解析】解:由题意可得:每天织布的量组成了等差数列{an},

a1=5(尺),S31=9×40+30=390(尺),设公差为d(尺),

则31×5+ d=390,解得d=

=

= = =

所以答案是:B.

【考点精析】根据题目的已知条件,利用等差数列的前n项和公式的相关知识可以得到问题的答案,需要掌握前n项和公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx,g(x)=x+ (x>0)都在x=x0处取得最小值.
(1)求f(x0)﹣g(x0)的值.
(2)设函数h(x)=f(x)﹣g(x),h(x)的极值点之和落在区间(k,k+1),k∈N,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1(﹣1,0),F2(1,0)分别是椭圆C: =1(a>0)的左、右焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若A,B分别在直线x=﹣2和x=2上,且AF1⊥BF1
(ⅰ)当△ABF1为等腰三角形时,求△ABF1的面积;
(ⅱ)求点F1 , F2到直线AB距离之和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=(x﹣ )cosx(﹣π≤x≤π且x≠0)的图象可能为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(I)若α是第二象限角,且 的值;
(Ⅱ)求函数f(x)在[0,2π]上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,A、B、C的对边分别为a,b,c,已知A≠ ,且3sinAcosB+ bsin2A=3sinC.
(I)求a的值;
(Ⅱ)若A= ,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(cosx)﹣x与函数g(x)=cos(sinx)﹣x在区间 内都为减函数,设 ,且cosx1=x1 , sin(cosx2)=x2 , cos(sinx3)=x3 , 则x1 , x2 , x3的大小关系是( )
A.x1<x2<x3
B.x3<x1<x2
C.x2<x1<x3
D.x2<x3<x1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,PD⊥平面PAB,AD∥BC,BC=CD= AD,E,F分别为线段AD,PD的中点.
(Ⅰ)求证:CE∥平面PAB;
(Ⅱ)求证:PD⊥平面CEF;
(Ⅲ)写出三棱锥D﹣CEF与三棱锥P﹣ABD的体积之比.(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=2,BD=2 ,且AC,BD交于点O,E是PB上任意一点.

(1)求证:AC⊥DE
(2)已知二面角A﹣PB﹣D的余弦值为 ,若E为PB的中点,求EC与平面PAB所成角的正弦值.

查看答案和解析>>

同步练习册答案