精英家教网 > 高中数学 > 题目详情

函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f′(x)>1,则不等式ex·f(x)>ex+1的解集为(  )

A.{x|x>0}

B.{x|x<0}

C.{x|x<-1或x>1}

D.{x|x<-1或0<x<1}

 

A

【解析】构造函数g(x)=ex·f(x)-ex,

因为g′(x)=ex·f(x)+ex·f′(x)-ex=ex[f(x)+f′(x)]-ex>ex-ex=0,

所以g(x)=ex·f(x)-ex为R上的增函数.

又因为g(0)=e0·f(0)-e0=1,

所以原不等式转化为g(x)>g(0),

解得x>0.故选A.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-3函数的奇偶性与周期性(解析版) 题型:解答题

已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(1)=-2.

(1)判断f(x)的奇偶性;

(2)求证:f(x)是R上的减函数;

(3)求f(x)在区间[-3,3]上的值域;

(4)若?x∈R,不等式f(ax2)-2f(x)<f(x)+4恒成立,求a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-1函数的概念、定义域和值域(解析版) 题型:选择题

设函数f(x)=,则不等式f(x)>f(1)的解集是(  )

A.(-3,1)∪(3,+∞) B.(-3,1)∪(2,+∞)

C.(-1,1)∪(3,+∞) D.(-∞,-3)∪(1,3)

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-12导数的应用二(解析版) 题型:选择题

若函数f(x)=x3-3x在(a,6-a2)上有最小值,则实数a的取值范围是(  )

A.(-,1) B.[-,1)

C.[-2,1) D.(-2,1)

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-11导数的应用一(解析版) 题型:解答题

已知函数f(x)=sinx,g(x)=mx- (m为实数).

(1)求曲线y=f(x)在点P(),f()处的切线方程;

(2)求函数g(x)的单调递减区间;

(3)若m=1,证明:当x>0时,f(x)<g(x)+.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-11导数的应用一(解析版) 题型:选择题

函数f(x)=x2-2lnx的单调递减区间是(  )

A.(0,1] B.[1,+∞)

C.(-∞,-1]∪(0,1] D.[-1,0)∪(0,1]

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-10导数的概念及运算(解析版) 题型:解答题

已知函数f(x)=x3-4x2+5x-4.

(1)求曲线f(x)在点(2,f(2))处的切线方程;

(2)求经过点A(2,-2)的曲线f(x)的切线方程.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:10-8n次独立重复实验与二项分布(解析版) 题型:填空题

在国庆期间,甲去北京旅游的概率为,乙、丙去北京旅游的概率分别为.假定三人的行动相互之间没有影响,那么这段时间内至少有一人去北京旅游的概率________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:10-5古典概型(解析版) 题型:解答题

一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个,现从袋中有放回地取球,每次随机取1个.

(1)求连续取两次都是白球的概率;

(2)若取1个红球记2分,取1个白球记1分,取1个黑球记0分,求连续取两次的分数之和为2的概率.

 

查看答案和解析>>

同步练习册答案