精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x3-4x2+5x-4.

(1)求曲线f(x)在点(2,f(2))处的切线方程;

(2)求经过点A(2,-2)的曲线f(x)的切线方程.

 

(1)x-y-4=0

(2)x-y-4=0或y+2=0

【解析】【解析】
(1)∵f′(x)=3x2-8x+5,

∴f′(2)=1,又f(2)=-2,

∴曲线f(x)在点(2,f(2))处的切线方程为y-(-2)=x-2,即x-y-4=0.

(2)设切点坐标为(x0,x03-4x02+5x0-4),

∵f′(x0)=3x02-8x0+5,

∴切线方程为y-(-2)=(3x02-8x0+5)(x-2),

又切线过点(x0,x03-4x02+5x0-4),

∴x03-4x02+5x0-2=(3x02-8x0+5)(x0-2),

整理得(x0-2)2(x0-1)=0,解得x0=2或x0=1,

∴经过A(2,-2)的曲线f(x)的切线方程为x-y-4=0或y+2=0.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-3函数的奇偶性与周期性(解析版) 题型:选择题

定义在R上的偶函数f(x)在[0,+∞)上是增函数,且f()=0,则不等式f(x)>0的解集是(  )

A.(0,) B.(2,+∞)

C.(0,)∪(2,+∞) D.(,1)∪(2,+∞)

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-12导数的应用二(解析版) 题型:填空题

已知函数f(x)=(x2-3x+3)ex,设t>-2,函数f(x)在[-2,t]上为单调函数时,t的取值范围是________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-11导数的应用一(解析版) 题型:选择题

函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f′(x)>1,则不等式ex·f(x)>ex+1的解集为(  )

A.{x|x>0}

B.{x|x<0}

C.{x|x<-1或x>1}

D.{x|x<-1或0<x<1}

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-10导数的概念及运算(解析版) 题型:填空题

已知函数y=f(x)的导函数为f′(x)=5+cosx,且f(0)=0,如果f(1-x)+f(1-x2)<0,则实数x的取值范围是________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-10导数的概念及运算(解析版) 题型:选择题

已知函数f(x)(x∈R)满足f(1)=1,且f(x)的导函数f′(x)<,则f(x)<的解集为(  )

A.{x|-1<x<1} B.{x|x<-1}

C.{x|x<-1或x>1} D.{x|x>1}

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:10-8n次独立重复实验与二项分布(解析版) 题型:填空题

一盒中放有大小相同的10个小球,其中8个黑球、2个红球,现甲、乙二人先后各自从盒子中无放回地任意抽取2个小球,已知甲取到了2个黑球,则乙也取到2个黑球的概率是________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:10-7离散型随机变量及分布列(解析版) 题型:解答题

袋中共有10个大小相同的编号为1,2,3的球,其中1号球有1个,2号球有m个,3号球有n个.从袋中依次摸出2个球,已知在第一次摸出3号球的前提下,再摸出一个2号球的概率是

(1)求m,n的值;

(2)从袋中任意摸出2个球,设得到小球的编号数之和为ξ,求随机变量ξ的分布列.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:10-4随机事件的概率(解析版) 题型:解答题

某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.

一次

购物量

1至

4件

5至

8件

9至

12件

13至

16件

17件及

以上

顾客数(人)

x

30

25

y

10

结算时间

(分钟/人)

1

1.5

2

2.5

3

 

已知这100位顾客中一次购物量超过8件的顾客占55%.

(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;

(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)

 

查看答案和解析>>

同步练习册答案