精英家教网 > 高中数学 > 题目详情

定义在R上的偶函数f(x)在[0,+∞)上是增函数,且f()=0,则不等式f(x)>0的解集是(  )

A.(0,) B.(2,+∞)

C.(0,)∪(2,+∞) D.(,1)∪(2,+∞)

 

C

【解析】因为f(x)在R上是偶函数且在[0,+∞)是增函数,f()=0,所以f(x)在(-∞,0]上是减函数,且f(-)=0,若f(x)>0,得x>x<-,所以0<x<或x>2,故选C.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-7函数的图象(解析版) 题型:填空题

给出定义:若m-<x≤m+(其中m为整数),则m叫做离实数x最近的整数,记作{x}=m,在此基础上给出下列关于函数f(x)=|x-{x}|的四个命题:①函数y=f(x)的定义域为R,值域为[0,];②函数y=f(x)在[-]上是增函数;③函数y=f(x)是周期函数,最小正周期为1;④函数y=f(x)的图象关于直线x= (k∈Z)对称.其中正确命题的序号是________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-5指数及指数函数(解析版) 题型:选择题

已知f(x)=2x+2-x,若f(a)=3,则f(2a)等于(  )

A.5 B.7 C.9 D.11

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-3函数的奇偶性与周期性(解析版) 题型:解答题

已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(1)=-2.

(1)判断f(x)的奇偶性;

(2)求证:f(x)是R上的减函数;

(3)求f(x)在区间[-3,3]上的值域;

(4)若?x∈R,不等式f(ax2)-2f(x)<f(x)+4恒成立,求a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-3函数的奇偶性与周期性(解析版) 题型:填空题

已知定义在R上的偶函数满足:f(x+4)=f(x)+f(2),且当x∈[0,2]时,y=f(x)单调递减,给出以下四个命题:

①f(2)=0;

②x=-4为函数y=f(x)图象的一条对称轴;

③函数y=f(x)在[8,10]上单调递增;

④若方程f(x)=m在[-6,-2]上的两根为x1,x2,则x1+x2=-8.

以上命题中所有正确命题的序号为________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-2函数的单调性与最值(解析版) 题型:填空题

设函数f(x)= (x+|x|),则函数f[f(x)]的值域为________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-2函数的单调性与最值(解析版) 题型:填空题

如果函数f(x)=ax2-3x+4在区间(-∞,6)上单调递减,则实数a的取值范围是______.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-1函数的概念、定义域和值域(解析版) 题型:选择题

设函数f(x)=,则不等式f(x)>f(1)的解集是(  )

A.(-3,1)∪(3,+∞) B.(-3,1)∪(2,+∞)

C.(-1,1)∪(3,+∞) D.(-∞,-3)∪(1,3)

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-10导数的概念及运算(解析版) 题型:解答题

已知函数f(x)=x3-4x2+5x-4.

(1)求曲线f(x)在点(2,f(2))处的切线方程;

(2)求经过点A(2,-2)的曲线f(x)的切线方程.

 

查看答案和解析>>

同步练习册答案